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Abstract. Bird sound classification is the task of relating any sound
recording to those species of bird that can be heard in the recording. Here,
we study bird sound clustering, the task of deciding for any pair of sound
recordings whether the same species of bird can be heard in both. We
address this problem by first learning, from a training set, probabilities
of pairs of recordings being related in this way, and then inferring a
maximally probable partition of a test set by correlation clustering. We
address the following questions: How accurate is this clustering, compared
to a classification of the test set? How do the clusters thus inferred relate
to the clusters obtained by classification? How accurate is this clustering
when applied to recordings of bird species not heard during training? How
effective is this clustering in separating, from bird sounds, environmental
noise not heard during training?
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1 Introduction

The abundance and variety of bird species are well-established markers of bio-
diversity and the overall health of ecosystems [10]. Traditional approaches to
measuring these quantities rely on human experts counting bird species at select
locations by sighting and hearing [34]. This approach is labor-intensive, costly and
biased by the experience of individual experts. Recently, progress has been made
toward replacing this approach by a combination of passive audio monitoring
[40,8,29] and automated bird sound classification [21]. The effectiveness of this
automated approach can be seen, for instance, in [22,45]. Bird sound classification
is the task of relating any sound recording to those species of bird that can be
heard in the recording [12,21]. Models and algorithms for bird sound classification
are a topic of the annual BirdCLEF Challenge [11,16,17,19,20]. Any model for
bird sound classification is defined and learned for a fixed set of bird species. At
the time of writing, the most accurate models developed for this task all have
the form of a neural network [11,12,18,20,21,22,37,39].

Here, we study bird sound clustering, the task of deciding for any pair of
bird sound recordings whether the same species of bird can be heard in both.
We address this task in three steps. Firstly, we define a probabilistic model of
bird sound clusterings. Secondly, we learn from a training set a probability mass
function of the probability of pairs of sound recordings being related. Thirdly,
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we infer a maximally probable partition of a test set by solving a correlation
clustering problem locally. Unlike models for bird sound classification, the model
we define for bird sound clustering is agnostic to the notion of bird species.

In this article, we make four contributions: Firstly, we quantify empirically how
accurate bird sound correlation clustering is compared to bird sound classification.
To this end, we compare in terms of a metric known as the variation of information
[3,31] partitions of a test set inferred using our model to partitions of the same
test set induced by classifications of this set according to a fixed set of bird
species. Secondly, we measure empirically how the clusters of the test set inferred
using our model relate to bird species. To this end, we relate each cluster to an
optimally matching bird species and count, for each bird species, the numbers of
false positives and false negatives. Thirdly, we quantify empirically how accurate
correlation clustering is when applied to recordings of bird species not heard
during training. Fourthly, we quantify empirically the effectiveness of correlation
clustering in separating from bird sounds environmental noise not heard during
training.

2 Related Work

Metric-based clustering of bird sounds with prior knowledge of the number of
clusters is studied in [7,30,38]: k means clustering in [38], k nearest neighbor
clustering in [7], and clustering with respect to the distance to all elements
of three given clusters in [30, Section 2.2]. In contrast, we study correlation
clustering [4] of bird sounds without prior knowledge of the number of clusters.

In [7], the coefficients in the objective function of a clustering problem are
defined by the output of a Siamese network. Siamese networks, introduced in [6]
and described in the recent survey [27], are applied to the tasks of classifying
and embedding bird sounds in [7,36]. We follow [7] in that we also define the
coefficients in the objective function of a clustering problem by the output of a
Siamese network. However, as we consider a correlation clustering problem, we
learn the Siamese network by minimizing a loss function fundamentally different
from that in [7]. Beyond bird sounds, correlation clustering with respect to costs
defined by the output of a Siamese network is considered in [14,26,41] for the
task of clustering images, and in [43] for the task of tracking humans in a video.
We are unaware of prior work on correlation clustering of bird sounds.

Probabilistic models of the partitions of a set, and, more generally, the
decompositions of graphs, without priors or constraints on the number or size
of clusters, are studied for various applications, including image segmentation
[1,2,23,25], motion trajectory segmentation [24] and multiple object tracking
[42,43]. The Bayesian network we introduce here for bird sound clustering is
analogous to the specialization to complete graphs of the model introduced in
[2] for image segmentation. Like in [43] and unlike in [2], the probability mass
function we consider here for the probability of a pair of bird sounds being in the
same cluster has the form of a Siamese network. Like in [2] and unlike in [43], we
cluster all elements, without the possibility of choosing a subset.
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Fig. 1. Depicted above is a Bayesian network defining conditional independence as-
sumptions of a probabilistic model for bird sound clustering we introduce in Section 3.2.

Complementary to prior work and ours on either classification or clustering
of bird sounds are models for sound separation [44] that can separate multiple
bird species audible in the same sound recoding and have been shown to increase
the accuracy of bird sound classification [9].

General theoretical connections between clustering and classification are
established in [5,47].

3 Model

3.1 Representation of clusterings

We consider a finite, non-empty set A of sound recordings that we seek to cluster.
The feasible solutions to this task are the partitions of the set A. Recall that
a partition Π of A is a collection Π ⊆ 2A of non-empty and pairwise disjoint
subsets of A whose union is A. Here, 2A denotes the power set of A. We will use
the terms partition and clustering synonymously for the purpose of this article
and refer to the elements of a partition as clusters.

Below, we represent any partition Π of the set A, by the function yΠ :
(

A
2
)

→
{0, 1} that maps any pair {a, a′} ∈

(
A
2
)

of distinct sound recordings a, a′ ∈ A to
the number yΠ

{a,a′} = 1 if a and a′ are in the same cluster, i.e. if there exists a
cluster U ∈ Π such that a ∈ U and a′ ∈ U , and maps the pair to the number
yΠ

{a,a′} = 0, otherwise.
Importantly, not every function y :

(
A
2
)

→ {0, 1} well-defines a partition
of the set A. Instead, there can be three distinct elements a, b, c such that
y{a,b} = y{b,c} = 1 and y{a,c} = 0. However, it is impossible to put a and b in the
same cluster, and put b and c in the same cluster, and not put a and c in the
same cluster, as this violates transitivity. The functions y :

(
A
2
)

→ {0, 1} that
well-define a partition of the set A are precisely those that hold the additional
property

∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} : y{a,b} + y{b,c} − 1 ≤ y{a,c} . (1)

We let ZA denote the set of all such functions. That is:

ZA :=
{

yΠ :
(

A
2
)

→ {0, 1}
∣∣∣ (1)

}
. (2)
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3.2 Bayesian model

With the above representation of clusterings in mind, we define a probabilistic
model with four classes of random variables. This model is depicted in Figure 1.

For every {a, a′} ∈
(

A
2
)
, let X{a,a′} be a random variable whose value is a

vector x{a,a′} ∈ R2m, with m ∈ N. We call the first m coordinates a feature vector
of the sound recording a, and we call the last m coordinates a feature vector
of the sound recording a′. These feature vectors are described in more detail in
Section 6.

For every {a, a′} ∈
(

A
2
)
, let Y{a,a′} be a random variable whose value is a

binary number y{a,a′} ∈ {0, 1}, indicating whether the recordings a and a′ are in
the same cluster, y{a,a′} = 1, or distinct clusters, y{a,a′} = 0.

For a fixed number n ∈ N and every j ∈ {1, . . . , n}, let Θj be a random
variable whose value is a real number θj ∈ R that we call a model parameter.

Finally, let Z be a random variable whose value is a set Z ⊆ {0, 1}
(

A
2
)

of
feasible maps from the set

(
A
2
)

of pairs of distinct sound recordings to the binary
numbers. We will fix this random variable to the set ZA defined in (2) of those
functions that well-define a partition of the set A.

Among these random variables, we assume conditional independencies accord-
ing to the Bayesian Net depicted in Figure 1. This implies the factorization:

P (X , Y, Z, Θ) = P (Z | Y)
∏

{a,a′}∈
(

A
2
)P (Y{a,a′} | X{a,a′}, Θ)

∏
{a,a′}∈

(
A
2
)P (X{a,a})

2m∏
j=1

P (Θj)

(3)

For the conditional probabilities on the right-hand side, we define probability
measures:

First is a probability mass function that assigns a probability mass of zero to
all y /∈ Z and assigns equal and positive probability mass to all y ∈ Z. For any

Z ⊆ {0, 1}
(

A
2
)

and any y ∈ {0, 1}
(

A
2
)
:

pZ|Y(Z, y) ∝

{
1 if y ∈ Z

0 otherwise
. (4)

Recall that we fix Z = ZA, i.e. we assign positive and equal probability mass to
those binary labelings of pairs of audio recordings that well-define a clustering of
the set A.

Second is a logistic distribution: For any ∀{a, a′} ∈
(

A
2
)
, any x{a,a′} ∈ R2m

and any θ ∈ Rn:

pY{a,a′}|X{a,a′},Θ(1, x{a,a′}, θ) = 1
1 + 2−fθ(x{a,a′}) . (5)

Here, the function fθ : R2m → R has the form of the Siamese neural network
depicted in Figure 2.
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Fig. 2. In order to decide if the same species of bird can be heard in the spectrograms
xa, xa′ ∈ Rm of two distinct sound recordings a, a′ ∈ A, we learn a Siamese neural
network. In this network, each spectrogram is mapped to a d-dimensional vector via the
same ResNet-18 [13], gµ : Rm → Rd, with output dimension d = 128 and parameters
µ ∈ R11235905. These vectors are then concatenated and put into a fully connected
layer hθ : Rd × Rd → R with a single linear output neuron and parameters ν ∈ R33025.
Overall, this network defines the function fθ : R2m → R in the logistic distribution (5),
with parameters θ := (µ, ν), such that for any input pair (xa, xa′ ) = xa,a′ , we have
fθ(x{a,a′}) = hν(gµ(xa), gµ(xa′ )).

Third is a uniform distribution on a finite interval. For a fixed τ ∈ R+, any
j ∈ {1, . . . , n} and any θj ∈ R:

pΘj (θj) ∝

{
1 if θj ∈ [−τ, τ ]
0 otherwise

. (6)

4 Learning

Training data consists of (i) a set A of sound recordings, (ii) for each sound
recording a ∈ A, a feature vector xa, (iii) for each pair {a, a′} ∈

(
A
2
)

of distinct
sound recordings, a binary number y{a,a′} ∈ {0, 1} that is 1 if and only if a human
annotator has labeled both a and a′ with the same bird species. This training
data fixes the values of the random variables X and Y in the probabilistic model.
In addition, we fix Z = ZA, as described above.

We learn model parameters by maximizing the conditional probability

P (Θ | X , Y, Z) ∝
∏

{a,a′}∈
(

A
2
)P (Y{a,a′} | X{a,a′}, Θ)

2m∏
j=1

P (Θj) . (7)

With the logistic distribution (5) and the prior distribution (6), and after
elementary arithmetic transformations, this problem takes the form of the linearly
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constrained non-linear logistic regression problem

inf
θ∈R2m

∑
{a,a′}∈

(
A
2
)

(
−y{a,a′}fθ(x{a,a′}) + log2(1 + 2fθ(x{a,a′}))

)
(8)

subject to ∀j ∈ {1, . . . , n} : − τ ≤ θj ≤ τ . (9)

In practice, we choose τ large enough for the constraints (9) to be inactive for
the training data we consider, i.e. we consider an uninformative prior over the
model parameters. We observe that the unconstrained problem (8) is non-convex,
due to the non-convexity of fθ. In practice, we do not solve this problem, not even
locally. Instead, we compute a feasible solution θ̂ ∈ Rn heuristically, by means of
stochastic gradient descent with an adaptive learning rate. More specifically, we
employ the algorithm AdamW [28] with mini-batches BA ⊆

(
A
2
)

and the loss

1
|BA|

∑
{a,a′}∈BA

(
−y{a,a′}fθ(x{a,a′}) + log2(1 + 2fθ(x{a,a′}))

)
. (10)

We set the initial learning rate to 10−4, the batch size to 64, and the number
of iterations to 380,000. Moreover, we balance the batches in the sense that there
are exactly |BA|/2 elements in BA with y{a,a′} = 1 and exactly |BA|/2 elements
in BA with y{a,a′} = 0. All learning is carried out on a single NVIDIA A100
GPU with 16 AMD EPYC 7352 CPU cores, equipped with 32 GB of RAM. Our
implementation can be here.

5 Inference

We assume to have learned and now fixed model parameters θ̂. In addition,
we are given a feature vector xa for every sound recording a ∈ A of a test set
A. This fixes the values of the random variables Θ and X in the probabilistic
model. In addition, we fix Z = ZA, as described above, so as to concentrate
the probability measure on those binary decisions for pairs of recordings that
well-define a partition of the set A.

We infer a clustering of the set A by maximizing the conditional probability

P (Y | X , Z, Θ) ∝ P (Z | Y)
∏

{a,a′}∈
(

A
2
)P (Y{a,a′} | X{a,a′}, Θ) (11)

For the uniform distribution (4) on the subset ZA, and for the logistic distri-
bution (5), the maximizers of this probability mass can be found by solving the
correlation clustering problem

max
y :

(
A
2
)

→{0,1}
fθ(x{a,a′}) y{a,a′} (12)

subject to ∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} : y{a,b} + y{b,c} − 1 ≤ y{a,c}
(13)

https://github.com/dsteindd/correlation-clustering-of-bird-sounds
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In practice, we compute a locally optimal feasible solution ŷ :
(

A
2
)

→ {0, 1}
to this np-hard problem by means of the local search algorithm GAEC, until
convergence, and then the local search algorithm KLj, both from [25]. The output
ŷ is guaranteed to well-define a clustering of the set A such that any distinct
sound recordings a, a′ ∈ A belong to the same cluster if and only if ŷ{a,a′} = 1.

6 Experiments

6.1 Dataset

We start from those 17,313 audio recordings of a total of 316 bird species from
the collection Xeno-Canto [46] of quality A or B that are recorded in Germany,
contain bird songs and do not contain background species. The files are re-sampled
to 44,100 Hz and split into chunks of 2 seconds. For each chunk, we compute the
mel spectrogram with a frame width of 1024 samples, an overlap of 768 samples
and 128 mel bins and re-scale it to 128 × 384 entries. Finally, to distinguish
salient from non-salient chunks, we apply the signal detector proposed in [22].
Bird species with less than 100 salient audio chunks are excludeed. This defines
a first dataset of 68 bird species with at least 10 minutes of audio recordings in
total. We split this set according to the proportions 8/1/1 into disjoint subsets
Train-68, Val-68 and Test-68. In addition, we consider a set Test-0,87 of 87 bird
species with less than 10 minutes but more than one minute of audio data. We
call the union of both test sets Test-68,87. In addition, we define a set Test-N
containing 39 classes of environmental noise not used for augmentation from the
collection ESC-50 [33]. We refer to the union of Test-68 and Test-N as Test-68,N.
During learning, we employ augmentation techniques, specifically: horizontal and
vertical roll, time shift, SpecAugment [32], as well as the addition of white noise,
pink noise and some environmental noise from ESC-50.

6.2 Metrics

In order to measure the distance between a predicted partition Π̂ of a finite set
A, on the one hand, and a true partition Π of the same set A, on the other hand,
we evaluate a metric known as the variation of information [3,31]:

VI(Π, Π̂) = H(Π | Π̂) + H(Π̂ | Π) (14)

Here, the conditional entropy H(Π | Π̂) is indicative of false joins, whereas the
conditional entropy H(Π̂ | Π) is indicative of false cuts.

In order to measure the accuracy of decisions ŷ :
(

A
2
)

→ {0, 1} for all pairs
{a, a′} ∈

(
A
2
)

of sound recordings also for decisions that do not well-define a
clustering of A, we calculate the numbers of true joins (TJ), true cuts (TC), false
cuts (FC) and false joins (FJ) of these pairs according to Equations (15) and (16)
below. From these, we calculate in the usual way the precision and recall of cuts,
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the precision and recall of joins, and Rand’s index [35].

TJ(yΠ , ŷ) =
∑

ij∈
(

A
2
) yΠ

ij ŷij , TC(yΠ , ŷ) =
∑

ij∈
(

A
2
)(1 − yΠ

ij )(1 − ŷij) (15)

FC(yΠ , ŷ) =
∑

ij∈
(

A
2
)(1 − ŷij)yΠ

ij , FJ(yΠ , ŷ) =
∑

ij∈
(

A
2
) ŷij(1 − yΠ

ij ) . (16)

6.3 Clustering vs Classification

Here, we describe the experiments we conduct in order to compare the accuracy
of a clustering of bird sounds with the accuracy of a classification of bird sounds.
The results are shown in Table 1 and Figure 3.

Procedure and results. Toward clustering, we learn the model fθ defined
in Section 3.2, as described in Section 4, from the data set Train-68, with and
without data augmentation, and apply it to the independent data set Test-68 in
two different ways: Firstly, we infer an independent decision y{a,a′} ∈ {0, 1} for
every pair of distinct sound recordings a, a′, by asking whether fθ(x{a,a′}) ≥ 0
(y{a,a′} = 1) or fθ(x{a,a′}) < 0 (y{a,a′} = 0). These decisions together do not
necessarily well-define a clustering of Test-68. Yet, we compare these decisions
independently to the truth, in Rows 1-2 of Table 1. Secondly, we infer a partition
of Test-68 by correlation clustering, as described in Section 5 (Rows 3-4 of
Table 1). Thirdly, we infer a partition of Test-68 and a subsample of Train-68,
which contains 128 randomly chosen recordings per species, jointly by locally
solving the correlation clustering problem for the union of these data sets, also
as described in Section 5; (Rows 5-6 of Table 1).

Toward classification, we learn a ResNet-18 on Train-68, with and without data
augmentation. Using this model, we infer a classification of Test-68 (Rows 7-8 of

Model Π RI VI VIFC VIFJ PC RC PJ RJ CA

1. fθ no 0.89 - - - 97.9% 89.9% 42.6% 79.5% -
2. fθ + Aug no 0.87 - - - 98.7% 86.9% 38.7% 87.6% -

3. fθ + CC yes 0.93 4.21 1.99 2.22 97.3% 95.0% 57.6% 72.1% -
4. fθ + Aug + CC yes 0.91 3.28 1.34 1.95 98.1% 92.0% 48.9% 81.3% -
5. fθ + CC + T yes 0.93 4.21 2.02 2.19 97.3% 95.2% 58.5% 71.7% -
6. fθ + Aug + CC + T yes 0.91 3.27 1.35 1.91 98.1% 92.2% 49.4% 80.8% -

7. ResNet18 yes 0.94 4.67 2.33 2.34 96.7% 96.9% 66.2% 64.8% 59.6%
8. ResNet18 + Aug yes 0.96 3.20 1.68 1.72 97.3% 97.8% 75.3% 71.8% 72.7%
9. BirdNET Analyzer yes 0.77 3.50 1.22 2.28 94.3% 79.4% 18.3% 48.9% 49.7%

10. fθ + T yes 0.93 4.26 1.97 2.29 97.3% 95.0% 57.8% 72.2% 64.1%
11. fθ + Aug + T yes 0.94 3.31 1.48 1.83 97.8% 95.6% 62.6% 77.3% 73.1%

Table 1. Above, we report, for models trained on Train-68 and evaluated on Test-68,
whether the inferred solution well-defines a partition of Test-68 (Π) and how this solution
compares to the truth in terms of Rand’s index (RI), the variation of information (VI),
conditional entropies due to false cuts (VIFC) and false joins (VIFJ), the precision (P)
and recall (R) of cuts (C) and joins (J), and the classification accuracy (CA).
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Table 1). In addition, we classify Test-68 by means of BirdNET analyzer [22] (Row
9 of Table 1). We remark that BirdNET is defined for 3-second sound recordings
while we work with 2-second sound recordings. When applying BirdNET to these
2-second recordings, they are padded with random noise as described in [15].
Finally, we infer a classification of Test-68 by assigning each sound recording
to one of the true clusters of Train-68 for which this assignment is maximally
probable according to the model fθ learned on Train-68. We report the accuracy
of this classification with respect to fθ in Rows 10-11 of Table 1. For each
classification of Test-68, we report the distance from the truth of the clustering
of Test-68 induced by the classification. This allows for a direct comparison of
classification with clustering.

Discussion. Closest to the truth by a variation of information of 3.20 is the
clustering of Test-68 induced by the classification of Test-68 by means of the
ResNet-18 learned from Train-68, with data augmentation (Row 8 in Table 1).
This result is expected, as classification is clustering with a constrained set of
clusters, and this constraint constitutes additional prior knowledge. Dropping this
information during learning but not during inference (Row 6 in Table 1) leads to
the second best clustering that differs from the true clustering of Test-68 by a
variation of information of 3.27. Dropping this knowledge during learning and
inference (Row 4 in Table 1) leads to a variation of information 3.28. It can be
seen from these results that a clustering of this bird sound data set is less accurate
than a classification, but still informative. From a comparison of Rows 2 and 4
of Table 1, it can bee seen that the local solution of the correlation clustering
problem not only leads to decisions for pairs of sound recordings that well-define
a clustering of Test-68 but also increases the accuracy of these decisions in terms
of Rand’s index, from 0.87 to 0.91. Looking at these two experiments in more
detail, we observe an increase in the recall of cuts and precision of joins due to
correlation clustering, while the precision of cuts decreases slightly and the recall
of joins decreases strongly. Indeed, we observe more clusters than bird species (see
Figure 3). There are two possible explanations for this effect. Firstly, the local
search algorithm we apply starts from the finest possible clustering into singleton
sets and is therefore biased toward excessive cuts (more clusters). Secondly, there
might be different types of sounds associated with the same bird species. We
have not been able to confirm or refute this hypothesis and are encouraged to
collaborate with ornithologists to gain additional insight.

6.4 Clustering Unseen Data

Next, we describe the experiments we conduct in order to quantify the accuracy
of the learned model for bird sound clustering when applied to sounds of bird
species not heard during training. The results are shown in Table 2. Additional
results for a combination of bird species heard and not heard during training are
shown in Table 3.

Procedure and results. To begin with, we learn fθ on Train-68 as described
in Section 4. Then, analogously to Section 6.3, we infer an independent decision
y{a,a′} ∈ {0, 1} for every pair of distinct sound recordings a, a′ from the data
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set Test-0,87, by asking whether fθ(x{a,a′}) ≥ 0. We compare these independent
decisions to the truth, in Rows 1-2 of Table 2. Next, we infer a partition of
Test-0,87 by correlation clustering, as described in Section 5; see Rows 3-4 of
Table 2. Analogously to these two experiments, we infer decisions and a partition
of the joint test set Test-68,87; see Table 3.

Discussion. It can be seen from Rows 3 and 4 of Table 2 that a clustering
inferred using the model fθ of the bird sounds of the data set Test-0,87 of 87 bird
species not contained in the training data Train-68 is informative, i.e. better than
random guessing. Furthermore, it can be seen from a comparison of Rows 1 and 3
as well as from a comparison of Rows 2 and 4 of Table 2 that correlation clustering
increases the recall of cuts and the precision of joins, but decreases the precision
of cuts and the recall of joins. Precision and recall of cuts are consistently higher
than precision and recall of joins. This observation is consistent with the excessive
cuts we have observed also for bird species seen during training, cf. Section 6.3.
Possible explanations are, firstly, the bias toward excessive cuts in clusterings
output by the local search algorithm we use for the correlation clustering problem
and, secondly, the presence of different types of sounds for the same bird species
in the data set Test-0,87. From Table 3, it can be seen that the clustering inferred
using fθ separates heard from unheard bird species accurately. From a comparison
of Tables 1 to 3, it can be seen for pairs of bird sounds both from species heard

Model Π RI VI VIFC VIFJ PC RC PJ RJ CA

1. fθ no 0.82 - - - 97.5% 83.5% 14.6% 57.1% -
2. fθ + Aug no 0.78 - - - 97.8% 79.2% 13.1% 64.0% -

3. fθ + CC yes 0.90 5.42 2.30 3.12 96.9% 92.4% 20.8% 40.9% 37.7%
4. fθ + Aug + CC yes 0.86 5.06 1.83 3.23 97.2% 88.4% 16.7% 47.5% 39.4%

Table 2. Above, we report the accuracy of the learned model fθ when applied to the
task of clustering the data set Test-0,87 of bird sounds of 87 bird species not heard
during training.

Model Π JUU CUU JUB CUB JBB CBB

1. fθ no P: 14.6% 97.5% 0% 100% 42.6% 97.9%
R: 57.1% 83.5% 100% 84.6% 79.5% 89.9%

2. fθ + Aug no P: 13.1% 97.8% 0% 100% 38.7% 98.7%
R: 64.0% 79.2% 100% 81.1% 87.6% 86.9%

3. fθ + CC yes P: 14.3% 96.1% 0% 100% 59.7% 97.1%
R: 23.2% 93.2% 100% 91.7% 70.1% 95.5%

4. fθ + CC + Aug yes P: 17.7% 96.8% 0% 100% 47.7% 98.1%
R: 39.0% 91.1% 100% 89.0% 81.3% 91.6%

Table 3. Above, we report the accuracy of the learned model fθ when applied to the
task of clustering the data set Test-68,87 of bird sounds of 68 bird species heard during
training and 87 bird species not heard during training. More specifically, we report
precision and recall of cuts and joins, separately for pairs of sound recordings both
belonging to Test-0,87 (UU), both belonging to Test-68 (BB) or containing one from
the set Test-0,87 and one from the set Test-68 (UB).
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during training (BB) or both from species not heard during training (UU), that
the accuracy degrades little in a clustering of the joint set Test-68,87, compared
to clusterings of the separate sets Test-68 and Test-0,87.

6.5 Clustering Noise

Next, we describe the experiments we conduct in order to quantify the accuracy
of clusterings, inferred using the learned model, of bird sounds and environmental
noise not heard during training. The results are shown in Table 4.

Procedure and results. To begin with, we learn fθ on the data set Train-
68 as described in Section 4. Then, analogously to Section 6.4, we infer an
independent decision y{a,a′} ∈ {0, 1} for every pair of distinct sound recordings
a, a′ from the data set Test-68,N, by asking whether fθ(x{a,a′}) ≥ 0. We compare
these independent decisions to the truth, in Rows 1-2 of Table 4. Next, we infer
a partition of Test-68,N by correlation clustering, as described in Section 5; see
Rows 3-4 of Table 4.

Discussion. From Table 4, it can be seen that fθ separates environmental
noise form the set Test-N accurately from bird sounds from the set Test-68, with
or without correlation clustering, and despite the fact that the noise has not been
heard during training on Train-68. From a comparison of Tables 1 and 4, it can
be seen that the clustering of those sound recordings that both belong to Test-68
(BB) degrades only slightly when adding the environmental noise from the set
Test-N to the problem. From the column JNB and CNB of Table 4, it can be
seen that clustering the 39 types of noise is more challenging. This is expected, as
environmental noise is different from bird sounds and has not been heard during
training.

7 Conclusion

We have defined a probabilistic model, along with heuristics for learning and
inference, for clustering sound recordings of birds by estimating for pairs of
recordings whether the same species of bird can be heard in both. For a public

Model Π JNN CNN JNB CNB JBB CBB

fθ no P: 3.9% 98.5% 0% 100% 42.6% 97.9%
R: 64.1% 59.2% 100% 78.4% 79.5% 89.9%

fθ + Aug no P: 3.2% 98.9% 0% 100% 38.7% 98.7%
R: 84.9% 34.2% 100% 77.9% 87.6% 86.9%

fθ + CC yes P: 3.3% 97.7% 0% 100% 57.5% 97.3%
R: 25.0% 81.4% 100% 87.0% 72.0% 95.0%

fθ + CC + Aug yes P: 3.5% 98.0% 0% 100% 47.7% 98.2%
R: 47.5% 66.8% 100% 88.2% 82.3% 91.5%

Table 4. Above, we report the accuracy of the learned model fθ on Test-68,N. This
includes precision and recall of cuts and joins for pairs of recordings both from Test-N
(NN), both from Test-68 (BB) or one from Test-N and one from Test-68 (NB).
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collection of bird sounds, we have shown empirically that partitions inferred by
our model are less accurate than classifications with a known and fixed set of bird
species, but are still informative. Specifically, we have observed more clusters than
bird species. This observation encourages future work toward solving the instances
of the inference problem exactly, with the goal of eliminating a bias toward
additional clusters introduced by the inexact local search algorithm we employ
here. This observation also encourages future collaboration with ornithologists
toward an analysis of the additional clusters. Finally, our model has proven
informative when applied to sound recordings of 87 bird species not heard during
training, and in separating from bird sounds 39 types of environmental noise not
used for training. Further work is required to decide if this can be exploited in
practice, e.g. for rare species with little training data.

Acknowledgement. The authors acknowledge funding by the Federal Min-
istry of Education and Research of Germany, from grant 16LW0079K.
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Fig. 3. For a correlation clustering of the set Test-68 with respect to the model fθ

trained on Train-68, the relation between predicted clusters (rows) and true bird species
(columns) is shown in terms of precision (blue, ) and recall (red, ).
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