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Abstract. Modern neural networks achieve state-of-the-art results on
land cover classification from satellite imagery, as is the case for almost
all vision tasks. One of the main challenges in this context is dealing with
geographic variability in both image and label distributions. To tackle
this problem, we study the effectiveness of incorporating bioclimatic in-
formation into neural network training and prediction. Such auxiliary
data can easily be extracted from freely available rasters at satellite
images’ georeferenced locations. We compare two methods of incorpo-
ration, learned embeddings and conditional batch normalization, to a
bioclimate-agnostic baseline ResNet18. In our experiments on the Eu-
roSAT and BigEarthNet datasets, we find that especially the use of con-
ditional batch normalization improves the network’s overall accuracy,
generalizability, as well as training efficiency, in both a supervised and
a self-supervised learning setup. Code and data are publicly available at
https://t.ly/NDQFF.
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1 Introduction

Land cover data has diverse applications, including the study of climate change,
resource and disaster management, as well as spatial planning, stressing its im-
portance for both science and practice [41,48]. Therefore, the extraction of land
cover data from satellite imagery is one of the most extensively studied tasks
in remote sensing and Earth observation. Recent developments in satellite tech-
nology and deep learning methods have further amplified this area of study,
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Fig. 1: Schematic summary of the presented approach: Satellite images’ georef-
erencing are used to extract bioclimatic information like temperature, elevation,
and percipitation (blue) from geographical rasters for each image. This is pro-
vided to the neural networks as an additional input modality. In the supervised
setting (top), an encoder and a classification head directly predict the land cover
class label (red). In the self-supervised setting (bottom), the encoder is pre-
trained using a symmetric decoder for image reconstruction.

boosting the accuracy, as well as the spatial and temporal resolution of current
land cover products.

One of the main challenges of land cover mapping remains the great geo-
graphic variability in both the distributions of images X and class labels Y .
This raises questions about both the accuracy and generalizability of the result-
ing models [16,26,44]. To tackle this issue, we draw a connection between land
cover and bioclimatology – the study of the physical environment’s effects on life
on Earth [43] – and leverage bioclimatic auxiliary information in a multi-modal
learning approach to support land cover classification models. We argue that by
explicitly incorporating bioclimatic context, models learn representations, which
are more invariant to bioclimatic context, and thus more discriminative with re-
gard to the land cover-relevant image content.

In particular, we point out two connected, yet distinct interactions between
the two: First, some land cover classes are more prevalent in some bioclimatic
regimes: In Boreal climates, for instance, one is much more likely to observe
the class Coniferous Forest than in Atlantic climates, where the class Pastures
may be much more prevalent, instead. We call this effect bioclimatic prior shift
P (Y |A = a1) ̸= P (Y |A = a2), as it can be described by an inequality of prior
class probabilities depending on the regional bioclimatic conditions A.

Second, we observe that land cover classes can appear differently depending
on the bioclimatic circumstances: As an example, the kinds of crops cultivated
in different bioclimates have a big effect on the appearance of classes like Annual
Crop and Perennial Crop. As this effect describes a change in the distribution
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of the inputs with respect to A, we call this effect bioclimatic covariate shift
P (X|A = a1) ̸= P (X|A = a2).

To evaluate bioclimate-aware neural networks’ abilities to counteract these ef-
fects, we first conduct extensive experiments on EuroSAT, a Europe-wide bench-
mark for land cover classification [15]. We find that models which leverage biocli-
matic data by means of conditional batch normalization [6] reliably outperform
both the model with added learned embeddings and the bioclimate-agnostic
model with respect to overall accuracy, generalizability, and training efficiency.

Besides the supervised case, we also consider a self-supervised learning setup,
where the encoder is trained on the pretext task of image reconstruction [21]. We
find that the resulting representations are better separable with respect to land
cover, if bioclimatic data are incorporated into the training through conditional
batch normalization. Furthermore, we achieve additional improvements for the
supervised setting by initializing the model with the pre-trained weights.

At the same time, we show that the bioclimate-aware models do not suffer
from the recently described pitfall of shortcut learning [34], which we examine
using the Grad-CAM tool for model interpretability [33].

We finally provide a brief outlook regarding the approach’s applicability in
more large-scale and complex settings. To this end, we show that classification
accuracy is also improved for supervised training on the much larger, multi-label
BigEarthNet [37,38] dataset.

A graphical outline of our approach is presented in Fig. 1.

2 Related Work

Improving neural networks by learning from multiple data modalities at once is
an intensely studied topic in the field of deep learning [31]. While many pioneer-
ing works of the field have focused on image or video understanding tasks based
on additional text or audio [6,28,30,35], the framework has since been applied to
many other applications and modalities like medicine [4,25] or robotics [19,22].

A popular method specifically designed for fusing complex structured data
with context data from other modalities is conditional batch normalization [6].
The method has since proven its effectiveness for many tasks such as style trans-
fer [8,17], super-resolution [45], domain adaptation [24], and image synthesis
[29,50].

Although most land cover classification approaches rely on images as the only
input modality [7,15,37], multi-modal learning approaches are of great interest
to the domain of remote sensing. Most importantly, RGB- or multispectral data
have been combined with other types of imagery like SAR [1,38], Lidar data [2],
or street-level imagery [36]. Our work differs from such approaches as we do not
fuse satellite imagery with another image sensor modality, but with bioclimatic
auxiliary information, which is easily obtainable and universally applicable to a
wide range of remote sensing data and applications.

More recently, co-georeferenced, multi-modal datasets have been used ex-
plicitly for self-supervised neural network pretraining [14,32]. In analogy to our
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approach, the additional modality can sometimes be derived either directly or
indirectly from the images’ georeferencing. For instance, latitude and longitude
information have been used to not only improve classification accuracy of geo-
tagged images [40], but also to design a geography-aware self-supervised con-
trastive training objective, which was also applied to remote sensing images [3].
Similarly, satellite images have been enriched with land cover statistics derived
from existing products to aid general representation learning [23]. The differ-
ence between these works and our approach, however, is that we do not use
the bioclimatic context information for deriving an entirely new objective, but
explicitly provide it to the network as an additional input modality, while re-
lying on standard, non-geographic loss functions in both the supervised and
self-supervised setting. This makes our approach less specific to certain realiza-
tions of self-supervised learning and thus, more universally applicable to a wide
range of training schemes. In addition, it is safe to assume that georeferencing
information is available for most satellite remote sensing, but not natural image
datasets.

Closely related to our work, conditional regularization approaches have been
adapted for some applications in Earth observation: For predicting wildfires from
various static and dynamic geographical variables, for example, location-aware
denormalization layers are used in conjunction with a multi-branch neural net-
work [9]. It is also used to extract geometric information from auxiliary GIS
data for individual building segmentation in SAR images [39] and for generating
high-resolution satellite images from a set of semantic descriptors [27].

3 Methodology

3.1 Data Preparation

We conduct the majority of our experiments on the EuroSAT benchmark for
satellite image land cover classification [15]. In this dataset, there are 27000 geo-
referenced images x from the Sentinel-2 mission, which are distributed across
the European continent. The images have a size of 64×64 pixels and 13 spectral
bands in the visible and infrared domains. The bands are originally at different
spatial resolutions between 10m and 60m, but have been sampled to a common
10m grid using bicubic interpolation. Each of the images is associated with one
land cover label y, distinguishing between the 10 classes Annual Crop, Forest,
Herbaceous Vegetation, Highway, Industrial, Pasture, Perennial Crop, Residen-
tial, River, and Sea & Lake.

In addition, we use BigEarthNet [37,38] as an example of a larger-scale and
more complex dataset. Like EuroSAT, it contains pairs of Sentinel-2 images and
land cover class labels across Europe. BigEarthNet is, however, much larger at
519341 120× 120 pixel images. Furthermore, it is a multi-label dataset with 19
land cover classes with the possibility of an image being assigned to multiple
labels. For a list of classes, we refer to Fig. 2.

For both EuroSAT and BigEarthNet, bioclimatic auxiliary vectors a are de-
rived from the WorldClim-BIO dataset [12]. It contains worldwide rasters of
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Fig. 2: The variability of land cover class label distributions across the different
biogeographic regions in BigEarthNet provides an indication of prior shift.

a total of 19 bioclimatic variables and one additional elevation raster from the
shuttle radar topography mission [11] at a resolution of 10 arcmin, which roughly
equates to 18.5 km in north-south direction, and between 8 km and 15 km in west-
east direction for our region of interest. Among the bioclimatic variables are e.g.
the mean annual temperature, temperature seasonality, and annual precipita-
tion. For a full list, we refer to the link in the corresponding reference [12]. To
assign a set of values to a specific image, the rasters are sampled at the center
location of the image using nearest neighbor interpolation. As the images are
much higher-resolved than the auxiliary rasters, variability of climatic variables
across the footprint area of single images is negligible.

Similarly, we also provide each image with a biogeographic label b, which is
derived in a similar fashion from maps by the European Environmental Agency
[10]. We differentiate between the five regions Alpine, Boreal-Arctic, Atlantic,
Mediterranean (including Macaronesia, Steppic and Black Sea), and Continen-
tal (including Pannonian) as a proxy for bioclimatic variability. These data,
however, will not be used during the training of the neural network, but only
serve data split and evaluation purposes. It must be stressed, that the extraction
of both a and b is straightforward, as satellite images’ locations are contained in
their georeferencing metadata in the majority of cases. The approach is thereby
generally transferable to any georeferenced dataset.
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(a) Alpine (b)
Boreal-Arctic

(c) Atlantic (d)
Mediterranean

(e) Continental

Fig. 3: The variability of example EuroSAT images for the class Annual Crop
from different biogeographical regions provide indication of covariate shift.

For training, validating, and testing the neural network models, both datasets
are split into fixed subsets of 60%, 20%, and 20%, respectively. We perform
the split with respect to the biogeographic label b, instead of the labels y as is
originally the case for EuroSAT [15]. This deviation is to ensure even bioclimatic
diversity throughout the data splits, so that the models can be reliably evaluated
regarding their geographic generalizability later on. The satellite images’ pixel
values, as well as the bioclimatic auxiliary vectors are normalized to the range
[0, 1] and we apply random horizontal and vertical flips to the images during
training and validation for data augmentation purposes.

To illustrate the presence of the previously discussed bioclimatic data shift
effects in the considered datasets, we provide some visual examples: First, the
BigEarthNet class distributions for the different biogeographic regions are shown
in Fig. 2, providing an indication for bioclimatic prior shift. Second, we show one
EuroSAT image of the class Annual Crop for each of the biogeographic regions
in Fig. 3 to highlight the presence of bioclimatic covariate shift. We note that
there may also be other reasons for data shift, such as sampling bias or other
unconsidered environmental variables, which are out of the scope of this work.

3.2 Neural Network Architectures and Training

Given the data quadruples {x, y, a, b} as described above, a neural network shall
predict a land cover label from the image, i.e. approximate the conditional dis-
tribution P (Y |X). The most important component of prediction is a fully convo-
lutional image encoder E , which yields an intermediate representation z = E(x).
We use the ResNet18 architecture [13], where the original input and pooling
layer is replaced by a single layer of strided convolutions with subsequent batch
normalization in order to adapt the architecture to the respective dataset’s image
size.

In the supervised setting, the network is completed by a one-layer classifi-
cation head C to output land cover class label predictions ŷ = C(z). The two
model components are trained in an end-to-end fashion to minimize the Cross
Entropy Loss between ŷ and y using the Adam optimizer [20]. As for the hyper-
parameters, we use a learning rate of 1 × 10−5 for both datasets and a batch
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size of 64 and 512 for EuroSAT and BigEarthNet, respectively. To determine the
optimal number of epochs needed for training, early stopping with a patience of
5 epochs for EuroSAT and 10 for BigEarthNet based on the validation accuracy
is utilized.

For the self-supervised case, which is only employed on EuroSAT, the encoder
is trained on the pretext task of image reconstruction [21]. To this end, the
encoder is complemented by a ResNet18 Decoder D, which mirrors the encoder’s
structure using transpose convolutions in place of convolution and pooling layers
[47]. For the reconstruction loss, we use a weighted average of a base L1 loss (l1),
which only considers pixel-wise differences and the negative structural similarity
index measure (lSSIM), which also reflects structural differences between the
images [46,49]:

lrec.(x, x̂) = (1− λ)l1(x, x̂) + λ(1− lSSIM(x, x̂)). (1)

The parameters of the model are also optimized end-to-end with Adam, but
the number of epochs is constantly set to 200. For the learning rate and the
batch size, we use the same specifications as described above and the additional
weighting hyperparameter is set to λ = 0.1 for our experiments.

After training, the bottleneck representation z must preserve as much visual
information about the image as possible in order for the decoder to be able to
reconstruct the image. As a result, the trained encoder serves as a reasonable
initialization for the subsequent supervised downstream task of land cover class
prediction, for which training is otherwise performed as in the supervised setting
described above.

3.3 Leveraging Bioclimatic Data

In order to alleviate the issues regarding data shift in the neural networks, the
models are not only given the images x, but also the bioclimatic auxiliary vector
a. Thereby, the resulting models explicitly approximate P (Y |X,A). We explore
two methods for incorporating the bioclimatic context into the neural networks:

In the first case, we apply a fully connected linear layer M with learnable
parameters to a. This embedding of the bioclimatic context is then simply added
to the encoder output to yield the intermediate representation z = E(x)+M(a).

As the second method for leveraging the bioclimatic context, we replace all
batch normalization layers in both the encoder and the decoder with conditional
batch normalization layers. Batch normalization in itself is one of the most popu-
lar regularization techniques in deep neural networks [18]. Its aim is to reduce the
internal covariate shift of a layer’s hidden representations hij , where the index i
refers to the batch dimension, and j refers to the feature or channel dimension.
First, they are standardized using the features’ means µj and variances σ2

j , for
which running estimates are stored:

hij ←
hij − µj√
σ2
j + ϵ

. (2)
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Afterward, they are rescaled by learnable scale and offset parameters γj and βj :

hij ← γjhij + βj . (3)

As an extension to regular batch normalization, conditional batch normaliza-
tion [6] makes these layers’ parameters dependent on some auxiliary data which
in our application is the images’ bioclimatic context ai. Thus, the learnable pa-
rameters are not optimized for directly, but as the result of a fully connected
linear layer T , which is individually applied to each ai:

γij , βij = T (ai). (4)

Note that in conditional batch normalization, the learned scale and bias pa-
rameters are different for the samples within a batch, which is not the case in
standard batch normalization. The statistics µj and σ2

j , on the other hand, are
still computed and applied independently of ai.

The resulting bioclimate-aware neural networks, abbreviated as ResNet18-
Emb and ResNet18-CBN, can be trained in the exact same fashion as the
bioclimate-agnostic ResNet18, allowing for a direct comparison between the
three different methods in both the supervised and the self-supervised setting.

4 Experiments and Evaluation

4.1 Accuracy

First, we train and test the different neural networks on EuroSAT. We compare
the overall accuracy, Acc(y, ŷ) = 1

N

∑N
i=0 1(yi = ŷi) with N denoting the number

of samples, of the bioclimate-aware and bioclimate-agnostic models in Tab. 1.
All models are trained from both random initializations and initializations from
self-supervised pre-training, which we simply refer to as the supervised and self-
supervised settings, respectively.

Table 1: Averages and standard deviations of test overall accuracy across 10 train
runs on EuroSAT.

Model Acc, Supervised in % Acc, Self-Supervised in %
ResNet18 95.68± 0.41 96.04± 0.36
ResNet18-Emb 95.90± 0.34 96.13± 0.28
ResNet18-CBN 96.93 ± 0.61 97.10 ± 0.23

The results show that ResNet18-CBN significantly outperforms both ResNet18-
Emb and the bioclimate-agnostic model. Unexpectedly, a learned embedding did
not lead to significant improvements, which indicates that it matters how the
bioclimatic context is incorporated into the neural network. Secondly, small im-
provements can be seen for all models if the encoder is initially trained on the
self-supervised reconstruction objective. It is notable, that the randomly initial-
ized ResNet18-CBN still outperforms the pretrained, bioclimate-agnostic model.
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4.2 Generalizability

Besides their accuracy, we also quantify the models’ generalizability as an addi-
tional assessment metric in Tab. 2. In fact, we consider two different notions of
generalizability: in a classical machine learning sense and in a geographic sense.

In the classical machine learning sense, generalization describes the difference
in accuracy between training and test data. This difference, which we denote by
Gen-ML, should be as small as possible, as a large gap indicates that the model
overfits to the distribution of the training data and is not sufficiently regularized.

In the geographic sense, we define generalizability as a model’s ability to per-
form equally well across different biogeographical regions b. For quantification,
we compute the accuracies over each regional subset of the test data and calcu-
late their standard deviation with respect to the overall accuracy, as described
in Sec. 4.1:

Gen-Geo(y, ŷ) =
√

1

B

∑
b

(Acc(yb, ŷb)−Acc(y, ŷ))2, (5)

where B is the number of biogeographical regions considered. We acknowledge
that by equally dividing the samples from all biogeographic regions in our train-
test-split, we only consider the geographic generalizability within the domain of
the training data. This is different from domain adaptation-related works which
evaluate and improve models regarding their geographic generalizability outside
the domain of the training data, e.g. different continents or cities [42].

Table 2: Averages and standard deviations of test generalizability metrics Gen-
ML and Gen-Geo across 10 training runs on EuroSAT.

Model Gen-ML in % Gen-Geo in %
Supervised Self-Supervised Supervised Self-Supervised

ResNet18 3.36± 0.55 2.64± 0.40 1.21± 0.34 1.01 ± 0.19
ResNet18-Emb 3.32± 0.53 2.60± 0.60 1.21± 0.27 1.18± 0.18
ResNet18-CBN 1.85 ± 1.09 1.80 ± 0.26 1.02 ± 0.23 1.01 ± 0.16

Both metrics of generalizability are best for ResNet18-CBN, while ResNet18-
Emb again only slightly outperforms the bioclimate-agnostic baseline. Improve-
ments with self-supervised pretraining are most significant for the bioclimate-
agnostic model, but also improve both metrics of the bioclimate-aware models.
Based on the results on Gen-ML, we conclude that leveraging bioclimatic con-
text through conditional batch normalization effectively regularizes neural net-
work training for land cover classification. As for Gen-Geo, we can also see that
ResNet18-CBN models generally achieve more geographically consistent classi-
fication results, which implies that bioclimatic data shift effects are successfully
counteracted, especially in the supervised setting.
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4.3 Training Efficiency

Here, we report the number of training epochs the model needs to pass certain
accuracy thresholds p on the validation data, which we denote by Eff-p.

To account for variability regarding floating point operations, and thereby
the time it takes to train a single epoch, we also need to determine relative
walltime multiplicators α for each model. To this end, 10 epochs of training are
run independently of training on the same physical GPU. The walltimes of each
epoch are recorded and averaged. We define the supervised, bioclimate-agnostic
ResNet18 as our baseline and set its α = 1, accordingly. We track the validation
accuracy throughout training with respect to the relative number of epochs, i.e.
the number of epochs multiplied by α. The curves are averaged across the ten
different runs.

Table 3: Efficiency characteristics and metrics Eff-0.95 of the implemented mod-
els as derived from the averaged training curves across 10 training runs on Eu-
roSAT.

Model α #Param.s Eff-0.95, Supervised Eff-0.95, Self-Supervised
ResNet18 1.000 12.556M 13.208 12.000
ResNet18-Emb 1.080 12.567M 13.651 15.379
ResNet18-CBN 1.242 12.749M 12.993 9.954

The results largely confirm the findings from Secs. 4.1 and 4.2. Training times
of ResNet18-CBN are reduced compared to the bioclimate-agnostic baseline in
both the supervised setting and the self-supervised setting, although the differ-
ence is more significant with respect to the latter, where training is about 23%
faster on average. Meanwhile, no improvements can be detected for ResNet18-
Emb, where we even observe a surprising decline in efficiency when pre-training
the model in a self-supervised manner.

4.4 Autoencoder Reconstructions and Representations

Below, we show an example image, as well as the corresponding reconstructions
by the different autoencoders during the pre-training step in the self-supervised
setting. The results for l1 and lSSIM on the test set are reported in Tab. 4.

Once again, ResNet18-CBN quantitatively outperforms the other two ap-
proaches in terms of reconstruction loss. The poor reconstruction quality is to be
expected due to the very large drop in dimensionality from the original image to
the latent representations: The images originally contain 64×64×13 = 53248 val-
ues and are compressed into just 512. Despite this subjectively poor performance
on the pretext task, the quantitative results from the previous sections suggest
that the self-supervised pretraining benefits subsequent land cover classification
and thus, that the encoder has learned useful land cover-relevant features.
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(a) Original image (b) ResNet18 (c) ResNet18-Emb (d) ResNet18-CBN

Fig. 4: RGB visualization of the original EuroSAT image and autoencoder re-
constructions of the different models.

To quantitatively evaluate the quality of the representations, we fit a simple
Support Vector Machine (SVM) classifier with a Gaussian radial basis function
kernel [5] to predict y from z with frozen encoder weights. The resulting overall
accuracies are reported in Tab. 4. Again, ResNet18-CBN outperforms both the
bioclimate-agnostic baseline and ResNet18-Emb. We also investigate the effect of
applying CBN to only E and only D. We notice that reconstructing quality suffers
when only applying CBN to E , whereas performance on the downstream task
is similar. On the other hand, accuracy of the SVM declines significantly when
applying CBN only to D, while reconstruction quality even slightly improves
with respect to both l1 and lSSIM.

Table 4: Averages and standard deviations of evaluation metrics of autoencoder
reconstructions and representations across 10 training runs.

Model l1 lSSIM SVM-Acc in %
ResNet18 0.0110± 0.0005 0.9232± 0.0052 76.45± 5.34
ResNet18-Emb 0.0104± 0.0004 0.9300± 0.0035 79.52± 2.30
ResNet18-CBN 0.0095± 0.0002 0.9344± 0.0024 83.73 ± 1.01
ResNet18-CBN (E only) 0.0114± 0.0006 0.9247± 0.0038 83.05± 2.35
ResNet18-CBN (D only) 0.0091 ± 0.0002 0.9384 ± 0.0021 75.25± 3.05

4.5 Sanity Checks for Conditional Batch Normalization

To confirm the integrity of ResNet18-CBN, we perform two basic sanity checks:
First, we study if our observed improvements are actually due to the incorpora-
tion of bioclimatic context, and not due to differences between standard batch
normalization and conditional batch normalization with respect to the overall
optimization scheme as described in Sec. 3.3. To this end, we shuffle the auxiliary
vectors a within each data split so that images are associated with ‘fake’ biocli-
matic data which were originally derived for a different image. If the bioclimatic
context in itself were irrelevant, this would have only little effect on the results.
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However, we find that models perform worse under this manipulation with an
average overall accuracy of 0.9496 across 10 runs, which is worse than ResNet18-
CBN with unshuffled bioclimatic auxiliary vectors and the bioclimate-agnostic
baseline, as reported in Sec. 4.1. This strengthens our hypothesis that bioclimatic
context is useful auxiliary information in the context of land cover classification
by ruling out the possibility that improvements are merely to changes in the
optimization scheme.

Another recently raised concern about multi-modal learning using conditional
batch normalization is that depending on the dataset, particularly the type and
quality of the auxiliary data, shortcut learning may be encouraged [34]. Shortcut
learning describes the phenomenon where models counterintuitively focus too
strongly on the auxiliary information and thus do not learn meaningful features
from the primary data source, i.e. the images.

We want to test if this effect is prevalent for our application and thus compute
attribution maps, which indicate the relevant locations of an image with respect
to specific class outputs. In particular, we apply Grad-CAM [33] to the last
layer of the trained ResNet18 models from the supervised setting. Because the
attribution maps are originally given in the respective layer’s spatial dimension,
they are upsampled to the original image size using bicubic interpolation.

(a) Original image (b) ResNet18 (c) ResNet18-Emb (d) ResNet18-CBN

Fig. 5: RGB visualization of the original image and overlayed Grad-CAM attri-
bution maps from the different models for a data sample of the class Highway.

We visually compare the attribution maps from the models, which are once
again averaged over the ten different runs, for a test data sample in Fig. 5. The
classes Highway and River are particularly useful in this context, as they contain
localizable objects in the image, which the Grad-CAM attributions should ideally
highlight. We find that the attribution maps derived from both bioclimate-aware
and -agnostic models are well aligned in this context, indicating that sensible
visual features are learned despite the use of auxiliary information. There is
thus no indication that the bioclimate-aware models suffer from the pitfall of
shortcut learning. The most likely explanation is that bioclimatic context is not
in itself informative enough to solve the prediction task, but still represents useful
information to regularize neural network training.
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4.6 Towards Large-Scale Application

While the simplicity of the EuroSAT dataset makes it suitable for the kinds
of extensive experiments described above, it also causes the baseline ResNet18
to perform rather well, leaving only little room for improvement. We therefore
provide additional accuracy metrics for supervised training on BigEarthNet,
which is more challenging due to its about 200 times larger size and the presence
of multiple labels for each image, as described in Sec. 3.1. In addition, unlike
in EuroSAT, the label distribution is highly unbalanced, as shown in Fig. 2,
which is why we report the micro- and macro-averaged F1-scores besides overall
accuracy in Tab. 5.

Table 5: Test accuracy metrics on BigEarthNet.
Model Acc in % F1(micro) in % F1(macro) in %
ResNet18 93.79 78.68 72.95
ResNet18-Emb 93.83 78.73 72.47
ResNet18-CBN 94.30 79.57 75.68

The results confirm our conclusions from the experiments on EuroSAT as
ResNet18-CBN stands out as the best performer across all metrics and ResNet18-
Emb does not offer significant improvements over the baseline. This is an indi-
cation that the approach is generally transferable to more data-intensive and
complex scenarios. We are therefore optimistic, that it will also be a suitable
building block within other types of neural networks, e.g. for semantic segmen-
tation, which we plan to investigate in future work.

5 Conclusion

We showed that leveraging bioclimatic auxiliary data in a multi-modal setup
benefits the training of neural networks for both supervised and self-supervised
land cover classification regarding all considered quantitative and qualitative
aspects. The incorporation by means of conditional batch normalization lead
to particularly good results, whereas improvements were surprisingly marginal
when using added embeddings. Because of the universal applicability to a wide
range of other datasets and architectures, these insights can have a great impact
on the growing interdisciplinary field of machine learning for Earth observation.
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