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Abstract. The potential of realistic and useful synthetic data is signif-
icant. However, current evaluation methods for synthetic tabular data
generation predominantly focus on downstream task usefulness, often
neglecting the importance of statistical properties. This oversight becomes
particularly prominent in low sample scenarios, accompanied by a swift
deterioration of these statistical measures. In this paper, we address this
issue by conducting an evaluation of three popular synthetic tabular data
generators based on their marginal distribution, column-pair correlation,
joint distribution and downstream task utility performance across high
to low sample regimes. The popular CTGAN model shows strong utility,
but underperforms in low sample settings in terms of utility. To overcome
this limitation, we propose MargCTGAN that adds feature matching of
de-correlated marginals, which results in a consistent improvement in
downstream utility as well as statistical properties of the synthetic data.

Keywords: Synthetic Data · GAN · Tabular Data · Evaluation Metrics.

1 Introduction

Tabular data, despite being the most widely used data type [12], presents sub-
stantial challenges ranging from data heterogeneity and quality measurement
to imbalance and privacy concerns. Encouragingly, recent advancements in syn-
thetic tabular data generators have shown considerable promise in tackling these
issues. These models have shown effectiveness in handling heterogeneous data
attributes [22,25], facilitating the safe sharing of personal records [5,19,18], and
mitigating class imbalance [8]. Nonetheless, the evaluation of existing models
predominantly focuses on downstream machine learning tasks and large datasets.
This evaluation paradigm overlooks their utility in broader practical scenarios, es-
pecially the data-limited, low-resource settings, and fails to consider other crucial
aspects of synthetic datasets including fidelity, diversity, and authenticity [1].

In response to these challenges, we introduce a comprehensive evaluation
framework, integrating nine distinct metrics across four critical dimensions:
downstream task utility, joint fidelity, preservation of attribute correlations, and
alignment of marginals (Section 5). Our objective is to thoroughly evaluate
the representative models using diverse metrics, aiming at a comprehensive
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understanding of their quality and adaptability, particularly for scenarios that
are underexplored in existing literature.

Our evaluation uncovers intriguing insights into the characteristics of three
popular synthetic tabular data generators: TableGAN [19], CTGAN [22], TVAE [22].
For instance, CTGAN model typically demonstrates high attribute fidelity but
falls short in utility for low-data scenarios. Conversely, TableGAN exhibits better
utility but lacks performance in other dimensions. To capitalize on the strengths
of both models, we propose MargCTGAN that improves upon CTGAN by introducing
feature matching of decorrelated marginals in the principal component space.
This approach consistently improves utility without compromising other fidelity
measures, especially in the data-limited settings.

In summary, we make the following contributions:

– We conduct an extensive investigation into the performance of representative
tabular data generators across various contexts, with a specific focus on
the low-sample regime that is underexplored in existing literature. This
investigation is carried out using a comprehensive evaluation framework,
which assesses the models across four critical dimensions: downstream task
utility, joint fidelity, column-pair fidelity, and marginal fidelity.

– Our comprehensive evaluation framework is released1 as an open-source
tool, with the aim of facilitating reproducible research, encouraging fair
and extensive comparisons among methods, as well as providing a deeper
understanding of the models’ performance, quality, and fidelity.

– Prompted by the suboptimal performance of existing tabular generators in
low-sample scenarios, we propose MargCTGAN. This model improves upon
CTGAN by introducing a moment-matching loss within a decorrelated feature
space, which effectively steers the generator towards capturing the statistical
characteristics intrinsic to the data distribution.

2 Related Works

2.1 Tabular Data Generators

In recent years, deep generative models have seen significant advancements
in their application to diverse forms of tabular data, including discrete at-
tributes [5], continuous values [18], and heterogeneous mixtures [19,23,22,25].
Notably, TableGAN [19], CTGAN [22], and TVAE [22] stand out as the most popular
benchmark models and will be the focus of our empirical evaluation. On the other
hand, the issue of limited data availability remains underexplored in literature,
despite several attempts to bypass such challenges by effectively combining multi-
ple data sources [4,17,24]. Our work aims to fill this research gap by introducing
a systematic evaluation across various scenarios, ranging from full-resource to
data-limited cases. Additionally, we propose model improvements that designed
to effectively capture the underlying data structure in low-sample settings.

1 https://github.com/tejuafonja/margctgan/

https://github.com/tejuafonja/margctgan/
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2.2 Evaluation of Tabular Data Generators

The evaluation of generators, particularly for tabular data, is a challenging area
due to its requirement for complex metrics, unlike simpler visual inspection for
image data [21]. Recent studies have introduced a variety of metrics: prominent
among these are downstream machine learning efficacy, unified metrics evalu-
ation [6], and evaluations focusing on distinct aspects [1,7]. In this work, we
consider comprehensive evaluation methods encompassing machine learning effi-
cacy, statistical properties such as divergence on marginals, column correlations,
and joint distance.

3 Background

We examine three leading tabular data generators with diverse architectures and
preprocessing schemes. Here, we present an overview of each model.

3.1 Tabular GAN (TableGAN)

TableGAN is a GAN-based method for synthesizing tabular data [19]. It converts
categorical columns into numerical representations using label encoding and
applies min-max normalization to numerical columns. Each record is transformed
into a 2D image represented as a square matrix, allowing the use of the DCGAN
model [20] for generating synthetic data. The architecture consists of a generator
network (G), a discriminator network (D), and a classifier network (C). G generates
synthetic data resembling real data, while D distinguishes between real and
synthetic data. C helps generate data suitable for downstream tasks by predicting
labels. Training follows standard GAN techniques [10], optimizing G and D
using the GAN loss. Information loss (LG

info) minimizes statistical differences
between real and synthetic data. The final loss objective optimized by G is
LG = LG

orig + LG
info + LG

class, where LG
orig minimizes log(1 − D(G(z))), and LG

info
minimizes statistical properties with privacy control.

3.2 Conditional tabular GAN (CTGAN)

CTGAN [22] is a GAN-based model designed to tackle challenges in data synthesis,
including generating multi-modal numerical columns and balancing categorical
columns. It introduces novel preprocessing schemes: mode-specific normalization
and training-by-sampling. Mode-specific normalization uses a variational Gaus-
sian mixture model to estimate the number of modes in numerical columns and
samples normalized values accordingly. Training-by-sampling addresses imbal-
anced categorical columns by conditioning the generator (G) and discriminator
(D) on a condition vector, which resamples the categorical column during train-
ing iterations. CTGAN is based on the PacGAN [16] framework and uses fully
connected neural networks for G and D. It optimizes the Wasserstein loss with
gradient penalty (WGP) [2] . The final loss objective optimized by G includes
the Wasserstein loss and a generator condition loss.
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3.3 Tabular VAE model (TVAE)

TVAE [22] is a variant of the variational autoencoder (VAE), a generative model
based on encoder-decoder neural networks. It employs fully connected neural
networks for the encoder (enc) and decoder (dec) networks. The encoder maps
the input data to a latent code, which serves as a compressed representation. The
decoder reconstructs the original data from this latent code. Both networks are
trained simultaneously using the evidence lower-bound (ELBO) [13] objective,
promoting effective latent space distribution learning and accurate data recon-
struction. By training the encoder and decoder together, TVAE learns a compact
representation capturing the data structure and generating realistic samples.
Numerical columns undergo similar preprocessing as CTGAN, while categorical
columns are one-hot encoded.

4 Method: MargCTGAN

MargCTGAN adheres to the standard Generative Adversarial Networks (GANs)
paradigm [10], which involves training a generator G and a discriminator D in
an adversarial manner. The training target is to enhance the discriminator’s
ability to distinguish between real and fake data, while simultaneously updating
the generator to produce samples that are increasingly realistic. We adopt the
WGAN-GP objective [11] in which the overall training process can be interpreted
as optimizing the generator to minimize the Wasserstein distance between the
distributions of the generated and real data:

LWGP = E
z∼pz

[
D
(
G(z)

)]
− E

x∼pdata

[
D(x)

]
+ λ

(
∥∇x̂D(x̂)∥2 − 1

)2 (1)

where x̂ is constructed by interpolating real and generated samples and λ denotes
the weight for the gradient penalty. The discriminator is trained to minimize
LWGP, while the generator is trained to maximize it.

Following the CTGAN [22] framework, we adopt several key techniques to
adapt GAN models for tabular data. Firstly, one-hot encoding is applied to pre-
process categorical attributes, paired with the Gumbel-softmax function serving
as the network output activation function, thereby ensuring differentiability.
Secondly, for numerical attributes, we apply a technique known as mode-specific
normalization in the pre-processing phase, enabling an accurate reflection of
the multi-modality in the values distribution. Lastly, we employ the training-
by-sampling strategy during the training process, which effectively balances the
occurrences of different classes in the categorical columns to match their real
distribution. This strategy introduces an additional loss term on the generator,
which we denote as Lcond.

While CTGAN generally demonstrates promising utility for training downstream
machine learning classifiers, it often falls short in capturing low-level distribution
statistics, particularly in low-sample scenarios (See Figure 2). Drawing inspiration
from TableGAN , we propose a moment matching loss that proactively encourages
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the generator to learn and mirror the first and second-order data statistics.
Notably, unlike TableGAN which attempts to match statistics on the features
extracted by the discriminator, we compute the first and second moments after
conducting the Principal Component Analysis (PCA) on the data. Specifically,
the transform is performed while maintaining the original data dimensionality, i.e.,
we simply decorrelate without down-projection. Intriguingly, this straightforward
technique proves effective (Figure 4), likely because the decorrelated feature
representation supports the independent moment matching. Formally,

Lmean =
∥∥∥ E
x∼pdata

[
f(x)

]
− E

z∼pz

[
f
(
G(z)

)]∥∥∥
2

Lstd =
∥∥∥ SD
x∼pdata

[
f(x)

]
− SD

z∼pz

[
f
(
G(z)

)]∥∥∥
2

Lmarg = Lmean + Lstd

LG = −LWGP + Lcond + Lmarg (2)

where f(·) denotes the PCA transformation function. Lmean targets the mean,
while Lstd focuses on the standard deviation. The total training losses for the
generator and discriminator are LG and LWGP, respectively.

5 Multi-Dimensional Evaluation Metrics

We present a comprehensive evaluation that accesses tabular data generators
performance across four critical dimensions: downstream task utility, joint fidelity,
column-pair fidelity, and marginal fidelity. The implementation details can be
found in Section 6.

Downstream Task Utility. This dimension focuses on the efficacy of synthetic
data as a substitute for real data in specific tasks. This effectiveness is typically
quantified by machine learning efficacy that evaluates the performance (e.g.,
F1-score or accuracy) on a distinct real test dataset when training predictive ML
models on synthetic data. In situations where knowledge of the target downstream
task is unavailable, an alternate methodology known as dimension-wise prediction
(or all-models test) may be employed. This methodology considers each column
as a potential target variable for the task and reports the mean performance
across all cases.

Joint Fidelity. This category aims to quantify the similarity between the overall
joint distributions of real and synthetic data. While an exact measurement is
always intractable, the most commonly used approximation is the distance to
closest record. This computes the Euclidean distance between each synthetic data
sample and its nearest neighbors in the real test dataset, intending to assess
the possibility of each synthetic sample being real. Conversely, the likelihood
approximation computes the distance between each real test sample and its
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closest synthetic sample. This mirrors the probability of each real sample being
potentially generated by the model, thereby encapsulating a concept of data
likelihood.

Column-Pair Fidelity. This dimension investigates the preservation of feature
interactions, specifically focusing on the direction and strength of correlations
between pairs of columns in the synthetic dataset as compared to the real dataset.
A commonly used metric for this purpose is the association difference, also
referred to as the pairwise correlation difference. This measure quantifies the
discrepancy between the correlation matrices of the real and synthetic datasets,
where the correlation matrix encapsulates the pairwise correlation of columns
within the data.

Marginal Fidelity. Accurately replicating the real data distribution requires
aligning the marginals, ensuring a match in the distribution of each individual
column. Evaluating this criterion involves quantifying the disparity between
two one-dimensional variables. Commonly used metrics for this purpose include
the Jensen-Shannon divergence, Wasserstein distance, and column correlation.
Additionally, we propose histogram intersection, widely used in various other
fields. The metric calculates the sum of the minimum probabilities between the
synthetic and real data distributions, expressed as HI(p, q) =

∑
i min(pi, qi). A

perfect match between p and q yields HI(p, q) = 1, while HI(p, q) = 0 indicates
no overlap between the two distributions. For numerical columns, discretization
via binning is typically performed prior to calculating divergence measures to
ensure tractability.

6 Implementation Details

6.1 Metrics

Downstream Task Utility. For the machine learning efficacy and all models
test metrics, we used the SDMetrics package 2 with logistic regression, decision
tree classifier, and multilayer perceptron models for classification tasks, and
linear regression, decision tree regressor, and multilayer perceptron models for
regression tasks. We standardized numerical columns for classification models
and performed one-hot encoding for categorical columns. F1-score was used for
classification models, and R2-score was normalized to [0, 1] for regression models.

Joint Fidelity. Numerical columns were min-max normalized to range between
0 and 1, and categorical columns were one-hot encoded. We used the scikit-
learn nearest-neighbor implementation 3 with Euclidean distance and different
2 https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/ml-efficacy-single-table/

binary-classification
3 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html

https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/ml-efficacy-single-table/binary-classification
https://docs.sdv.dev/sdmetrics/metrics/metrics-in-beta/ml-efficacy-single-table/binary-classification
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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Table 1: Summary of Datasets. Col refers to number of columns. N/B/M cor-
respond to the number of numerical, binary, and multi-class categorical columns,
respectively.

Dataset Train/Test Size Col N/B/M Task
Adult 34118/14622 15 7/2/6 classification
Census 199523/99762 41 7/3/31 classification
News 31644/8000 60 45/15/0 classification
Texas 60127/15032 18 7/1/10 classification

numbers of nearest neighbors ([1, 2, 3, . . . , 9]). For the likelihood approximation,
we calculated the distance between each of 5000 random test samples to its closest
synthetic sample and report the average over real test samples. For the distance
to closest record metric, we compute the distance of each sample in the synthetic
set to its nearest neighbor in a set of 5000 random test samples and report the
average over the synthetic samples.

Column-Pair Fidelity. The associations difference metric was inspired by the
“plot correlation difference” function from the tabular-evaluator package 4 and
implemented using the dython package 5. We used Pearson correlation coefficient
for numerical columns, Cramer’s V for categorical columns, and the Correlation
Ratio for numerical-categorical columns. The range of Cramer’s V and Correlation
Ratio is between 0 and 1, while Pearson correlation coefficient ranges from -1 to
1. We calculated the absolute difference between the association matrices of the
synthetic data and the real data, reporting the mean absolute difference.

Marginal Fidelity. Numerical columns were min-max normalized to range
between 0 and 1, and categorical columns were one-hot encoded. The marginal
metrics were applied to each column in the dataset. Binning followed a uniform
grid between 0 and 1, using bin widths sizes of 25, 50, or 100 for the real
data. For the histogram intersection, Wasserstein distance, and Jenson-Shannon
distance metrics, the same binning strategy was used for numerical columns. The
SciPy package 6 was used to calculate Wasserstein distance and Jenson-Shannon
distance with the base=2 setting. The Dython package was used to compute the
column correlation metric and provided an implementation for the histogram
intersection metric, which was not available in prior work.

7 Experiments

Setup. We conducted evaluations on four benchmark tabular datasets: Adult [14],
Census [15], News [9], and Texas. These datasets exhibit diverse properties in
4 https://github.com/Baukebrenninkmeijer/table-evaluator
5 http://shakedzy.xyz/dython/modules/nominal/
6 https://docs.scipy.org/

https://github.com/Baukebrenninkmeijer/table-evaluator
http://shakedzy.xyz/dython/modules/nominal/
https://docs.scipy.org/
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terms of size (spanning 30-199 thousand samples), column heterogeneity, and
distinct characteristics (Refer to Table 1 and Appendix B for details). Our
investigation spans a geometric progression of sample sizes, extending from 40
to the full dataset size (notated as “all”), to emulate a range from low to high
resource settings. In line with existing studies [22], models were trained for 300
epochs. The evaluations were conducted on a separate test set that was never used
during the whole training process of the tabular data generators. To account for
potential randomness, experiments were conducted over three different random
seeds for model training and repeated across five trials for generating synthetic
datasets. All the code was implemented in the Python and all experiments are
conducted on a single Titan RTX GPU. See details in Appendix A.

7.1 Correlation of Metrics

In order to evaluate the tabular data generators comprehensively across various
dimensions, we conducted a thorough correlation analysis of the metrics discussed
in Section 5, as illustrated in Figure 1. Our analysis revealed a significant
degree of correlation among metrics within each dimension. This was particularly
evident for the marginal-based metrics, with Pearson coefficients ranging from
0.74 to 0.98. Consequently, any of these metrics could effectively represent
their respective dimension. To ensure clarity and computational efficiency, we
specifically selected the efficacy test (machine learning efficacy), closeness
approximation (distance to closest record), associations difference, and
histogram intersection as representative metrics for summarizing each crucial
dimension discussed in Section 5.

7.2 Performance Comparison

Downstream Task Utility. The efficacy score measures the utility of synthetic
data in downstream tasks, as illustrated in the top-left plot of Figure 2. In the
best-case scenario (marked as “all” in x-axis), the performances of CTGAN, TVAE,
and MargCTGAN are comparable. Performance generally degrades in low-sample
settings, with the most significant drop around the size of 640. This decline is
particularly notable for CTGAN, which exhibits a relative error up to 57%. While
TVAE generally outperforms the other models across varying sample sizes, our
MargCTGAN performs robustly, demonstrating particular advantages in low-sample
settings. Notably, MargCTGAN consistently outperforms its backbone model, CTGAN,
across all settings.

Joint Fidelity & Memorization. The distance to the closest record metric, de-
picted in the bottom-left subplot of Figure 2, measures the alignment between the
real and synthetic joint distribution and simultaneously illustrates the memoriza-
tion effects of the generators. Striking a balance is crucial as over-memorization
might compromise privacy. TableGAN consistently maintains the most substantial
distance from the real data reference, aligning with its design objective of privacy
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column_correlation

wasserstein_distance

jensonshannon_distance
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likelihood_approximation

closeness_approximation

efficacy_test

all_models_test

1 0.74 0.82 0.98 0.85 0.69 0.72 0.84 0.83

0.74 1 0.94 0.83 0.61 0.57 0.14 0.64 0.54

0.82 0.94 1 0.88 0.71 0.64 0.26 0.71 0.59

0.98 0.83 0.88 1 0.85 0.74 0.58 0.83 0.77

0.85 0.61 0.71 0.85 1 0.86 0.59 0.84 0.82

0.69 0.57 0.64 0.74 0.86 1 0.31 0.69 0.56

0.72 0.14 0.26 0.58 0.59 0.31 1 0.63 0.79

0.84 0.64 0.71 0.83 0.84 0.69 0.63 1 0.92

0.83 0.54 0.59 0.77 0.82 0.56 0.79 0.92 1
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1: Pearson correlation coefficients (in absolute value) among different metrics
across multiple experimental trials on all datasets.

preservation. Conversely, TVAE displays the closest proximity, even exceeding the
real reference, indicating a potential overfitting risk and privacy leakage. This
may be attributed to its use of reconstruction loss in its training objective [3].
As the training size reduces, the distance between the synthetic and real data
first increases then decreases, potentially signifying the generator’s shift from
generalization to memorization. While both CTGAN and MargCTGAN maintain a
moderate distance from real data, our MargCTGAN generally demonstrates a closer
proximity to the reference, presenting an appropriate balance between alignment
and privacy protection.

Pairwise Correlation. The association difference metric (bottom-right subplot
in Figure 2) quantifies the disparity between the correlation matrices of the
real and synthetic data. As expected, this disparity increases as the sample size
decreases, a trend also seen in the real data reference. This could be attributed
to data diversity, where different smaller subsets might not retain the same
statistical characteristics while the sampling randomness is accounted for in our
repeated experiments. Among all models, TableGAN exhibits the largest associa-
tions difference score, particularly in the low-sample regime, indicating challenges
in capturing associations with limited training samples. Both MargCTGAN and
TVAE display similar behavior, with our MargCTGAN following the trend of real
data reference more precisely, specifically in low-sample settings.
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Fig. 2: Averaged score across datasets. The X-axis represents the size of the
training dataset, with “all” indicating the full dataset size. Real data (reference)
corresponds to the metrics directly measured on the real (train vs. test) data,
serving as the reference (oracle score) for optimal performance.

Marginal Matching. The histogram intersection metric, depicted in the top-
right subfigure in Figure 2, assessing the overlap of real and synthetic marginal
distributions. Our moment matching objective within MargCTGAN explicitly en-
courages such coverage of low-level statistics, leading to consistent superior
performance of MargCTGAN across various settings. A more detailed analysis,
presented in Figure 3, reveals performance differences across numerical and cat-
egorical columns. Here, TVAE demonstrates good performance with numerical
attributes but exhibits limitations in handling categorical ones, whereas CTGAN
excels in handling categorical columns, possibly due to its training-by-sampling
approach, but falls short with the numerical ones. Notably, MargCTGAN balances
both aspects, outperforming CTGAN in numerical columns while matching its
performance in categorical ones. Moreover, while most models show decreased
performance in low-resource settings, TableGAN exhibits improvement, potentially
due to its similar moment matching approach to ours, thereby further validating
our design choice.

Insights into Performance and Behavior of Histogram Intersection Met-
ric. Figure 3 highlighted that TVAE excels in datasets with numerical columns but
struggles with categorical columns, resulting in subpar marginal performance due
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Fig. 3: Histogram intersection score for numerical and categorical columns
respectively, which is averaged across datasets. The X-axis represents the size
of the training dataset, with “all” indicating the full dataset size. Real data
(reference) corresponds to the metrics directly measured on the real (train vs.
test) data, serving as the reference (oracle score) for optimal performance.

to its inability to accurately reproduce different categories. Surprisingly, despite
this limitation, the synthetic datasets generated by TVAE showed high utility in
downstream tasks, suggesting that a good marginal distribution is not always
a prerequisite for usefulness. On the other hand, CTGAN demonstrated superior
performance in capturing associations within categorical columns, showcasing the
effectiveness of its training-by-sampling approach. Notably, MargCTGAN achieved
similar performance to CTGAN in categorical columns while outperforming it in
numerical columns, aligning more closely with TVAE in this aspect.

It is important to note that all models experienced degraded performance
in low-resource settings. However, interestingly, TableGAN exhibited improved
performance in such scenarios. This improvement may be attributed to its
information loss, which share similar idea of our moment matching objective.
Figures 5(a), 5(b), 5(c), 5(d) in Appendix C further shows the breakdown across
the different datasets.

Ablation of Moment Matching in Raw Data Space. We conducted an
additional ablation study to investigate the effect of the moment matching tech-
nique with and without applying PCA in MargCTGAN. As shown in Figure 4, while
both moment matching without PCA (CTGAN+Raw) and with PCA (MargCTGAN)
performs generally better than the baseline CTGAN, the PCA adopted in our
MargCTGAN does provide additional notable improvement consistently across
different metrics considered in our study.

8 Discussion

While our MargCTGAN shows consistent improvements over a broad range of
settings, we discuss additional observations and limitations below. The ablation
study examined the effect of the moment matching technique with and without
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Fig. 4: Comparison between CTGAN trained with PCA loss objective (MargCTGAN)
and CTGAN trained with raw moment matching loss objective. The X-axis rep-
resents the size of the training dataset, with “all” indicating the full dataset
size. Real data (reference) corresponds to the metrics directly measured on
the real (train vs. test) data, serving as the reference (oracle score) for optimal
performance.

applying PCA in MargCTGAN. Both approaches outperformed the baseline CTGAN,
but the PCA-moment matching in MargCTGAN provided notable improvement
across different metrics. However, in extremely low-sample scenarios, MargCTGAN
showed a performance drop compared to CTGAN in terms of capturing associations
and reproducing marginal distributions. We attribute this to the rank-deficiency
issue in the PCA-moment matching approach when the sample size is smaller
than the number of features. In such cases, models like CTGAN with the raw feature
moment matching (CTGAN+Raw) method may be more suitable. Understanding the
strengths and weaknesses of different models under varying resource constraints
helps in selecting the appropriate synthetic data generation approach.

9 Conclusion

In conclusion, our comprehensive evaluation of three popular tabular data gen-
erators across different dataset sizes underscores the importance of developing
models that excel in low-sample regimes. Consequently, we propose MargCTGAN,
an adaptation of the popular CTGAN model, which consistently exhibits perfor-
mance improvements in various dataset sizes and setups. This further emphasizes
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the significance of incorporating statistical moment matching techniques in the
optimization process to enhance the model’s learning capabilities. To ensure
the impact and reproducibility of our work, we release our code and setup7.
We hope that the availability of our evaluation framework will contribute to
the advancement of the current state of evaluating tabular data generators and
facilitate future research in this evolving field.
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