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Abstract. Detecting airborne dust in common RGB images is hard.
Nevertheless, monitoring airborne dust can greatly contribute to climate
protection, environmentally friendly construction, research, and numer-
ous other domains. In order to develop an efficient and robust airborne
dust monitoring algorithm, various challenges have to be overcome. Air-
borne dust may be opaque as well translucent, can vary heavily in density,
and its boundaries are fuzzy. Also, dust may be hard to distinguish from
other atmospheric phenomena such as fog or clouds. To cover the demand
for a performant and reliable approach for monitoring airborne dust, we
propose DustNet, a dust density estimation neural network. DustNet ex-
ploits attention and convolutional-based feature pyramid structures to
combine features from multiple resolution and semantic levels. Further-
more, DustNet utilizes highly aggregated global information features as
an adaptive kernel to enrich high-resolution features. In addition to the
fusion of local and global features, we also present multiple approaches
for the fusion of temporal features from consecutive images. In order to
validate our approach, we compare results achieved by our DustNet with
those results achieved by methods originating from the crowd-counting
and the monocular depth estimation domains on an airborne dust density
dataset. Our DustNet outperforms the other approaches and achieves a
2.5% higher accuracy in localizing dust and a 14.4% lower mean absolute
error than the second-best approach.

Keywords: Dust Monitoring · Visual Regression · Deep Learning.

1 Introduction

Monitoring airborne dust emissions is a valuable and important task since air-
borne dust significantly affects climate, human health, infrastructure, buildings,
and various socio-economic sectors. The emergence of airborne dust particles
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Fig. 1: DustNet objective. The objective of our method consists in estimating
the dust level in a given RGB image or sequence. The left part shows a scene
of a construction site [12], while the right part shows a dust density map of the
scene.

can occur due to natural phenomena such as strong winds, wildfires, and seis-
mic activities but may also be caused by human activity. Typical anthropogenic
pollution sources are construction, traffic, or mining sites. Although completely
mitigating dust emissions is not feasible, suppressing emissions with focused mea-
sures is possible. This e.g. includes watering untreated roads, speeding down ve-
hicles, or reducing mining activities. However, optimizing dust mitigation strate-
gies would require practical and economic dust emission monitoring. Most con-
ventional instrument-based in-situ monitoring equipment focuses on identifying
the impact of dust emissions but is limited in attributing responsibilities. On
the other hand, remote sensing 3D dust scanning technologies, such as lidar, are
not economically feasible on a large scale and may produce noisy and hard-to-
interpret data in complex terrains. Hence, visual monitoring via camera-based
systems would be preferable for identifying airborne dust emissions. However,
visual dust density estimation is still underexplored. One of the possible reasons
for the scarcity of research in this domain is that detecting dust in an image is
a highly ill-posed problem. There is a multitude of issues why detecting dust is
so hard: dust may vary significantly in terms of density, and it can be opaque
as well as translucent. Furthermore, dust density variation can be very imbal-
anced. For example, in dry regions, the dense dust of dust storms will emerge
less frequently than transparent dust due to low winds and only sporadically
occur during particular meteorological configurations. Also, dust can be emit-
ted at a wide range of locations and for various reasons. The transparency of
dust implies that the appearance of dust is easily affected by environments, and
its boundaries are usually fuzzy. As a result, images with dust appear partially
blurry and usually have low spatial contrast. Classical algorithms usually can-
not exploit these partial blur effects because other atmospheric effects like fog
or clouds can cause similar effects. Also, for humans, detecting dust in an image
sequence is much easier than in a single image, but exploiting temporal data by
an algorithm is challenging. For example, moving clouds, vehicles, or shadows
can easily distort results of optical flow-based methods. In addition, there is no
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clear color scheme for dust. Opaque dust can show a brownish color like in a
dust storm, but it can also have a black shade in a mining explosion. Overall,
the aforementioned properties of dust indicate the need for a more sophisticated
approach.

In the last decade, deep learning has had huge success in various tasks like
classification [15], object detection [30], neural linguistic processing [35], and re-
mote sensing [41]. However, airborne dust monitoring, obstructed by the afore-
mentioned challenges, is not well researched, and most scientific papers focus on
satellite images [16], or related tasks like smoke binary segmentation [37]. Re-
cently, De Silva et al. published a binary dust segmentation dataset called URDE
[7]. While this can be seen as a first important step towards dust monitoring,
we believe that a regression approach could be more beneficial. In contrast to
semantic segmentation, which predicts a label on a per-pixel basis, the continu-
ous range of dust densities rather suits a regression strategy. Furthermore, the
vague boundaries of dust make it challenging to create discrete hard labels.

Accordingly, this work focuses on density estimation (see Fig. 1) and thus
is most related to DeepDust [27]. DeepDust estimates density maps on single
images. In order to detect dust, it exploits multiscale feature maps by utilizing
feature pyramid network [20] (FPN) structures. In contrast to that work, we
also address the fusion of temporal information. Furthermore, we also exploit
attention strategies and rely not only on a strictly convolutional method.

In order to validate the effectiveness of our approach, we compare achieved
results to those of visual density estimation techniques originating from other
domains, including monocular depth estimation (MDE) and crowd counting.
MDE is the task of estimating the scene depth on a per-pixel basis, whereas crowd
counting is the task of approximating the number of people in a given image.
Though both tasks differ strongly from dust density estimation, our method is
heavily influenced by ideas of both domains. In summary, the main contributions
of this work are the following: (1) We research the underexplored field of airborne
dust density estimation and propose various neural network architectures. (2)
Our proposed neural networks combine attention-based and convolutional-based
FPN structures to merge local and global features. (3) Our work addresses the
fusion of temporal features in the field of dust density estimation. (4) In order
to demonstrate the effectiveness of the proposed neural network architectures,
we compare the achievements by our novel techniques with those of methods
originating from the crowd counting and MDE domains on the Meteodata dust
dataset.

2 Related Work

In this section, we briefly summarize related work with a focus on vision trans-
formers, crowd counting and MDE.



4 A. Michel et al.

Backbone Layer I

Backbone Layer II

E1

E2

Backbone Layer III

E3

Backbone Layer IV

E4

Stem

E0

Cross Swin Block I

Cross Swin Block II

Cross Swin Block III

Cross Swin Block IV

PPM

Q3

Q0

Q1

Q2

Q4

Conv Module

D1

Concat

Transpose
Conv Module

Concat

Transpose
Conv Module

Concat

Transpose
Conv Module

Transpose
Conv Module

2D Avg Pool

W0

Adaptive
Conv Module

D0 Backend

AFPN

Matcher

Fuser

Backbone

Upsample

Fig. 2: Overview of our proposed DustNet. The basic blocks are a backbone,
the AFPN, the matcher, the PPM, the fuser, and the backend.

2.1 Vision Transformer

Vaswani et al. [35] introduced the transformer architecture in 2017 in the field
of natural language processing (NLP). The centerpiece of the transformer ar-
chitecture is the multi-head attention module. Inspired by the success of the
transformer architecture in NLP, the vision transformer (VIT) [8] introduced
the transformer encoder successfully in the vision domain. In order to improve
the performance of vision transformer especially in high-resolution settings, Liu
et al. [23] introduced a hierarchical architecture, the swin transformer (Swin),
which utilizes shifted windows to achieve a linear computational complexity. The
attention is calculated only between patches, which are part of a specific window.
The windows are shifted to create connections between features of the previous
windows. The second version of the swin transformer [22] improves this approach
further by an alternative positional encoding scheme and replacing the scaled
dot attention with cosine attention, which performs better in higher resolutions.

2.2 Crowd Counting

Density estimation methods [39,31,19,21,26] have been used successfully in crowd
counting. The objective of crowd counting is to predict a coarse density map of
the relevant target objects, e.g. usually people. The ground truth is generated
by smoothing center points with a multi-dimensional Gaussian distribution. Re-
cent approaches are focused on increasing the spatial invariance [26] or dealing
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(a) Concatenation before processing. (b) Early multiscale feature fusion.

(c) Late multiscale feature fusion. (d) Adaptive global feature fusion.

Fig. 3: Different fusion approaches of DustNet. The fusion strategy spans
from early (a) to late (d) feature merging of each consecutive image.

with noise in the density maps [6]. Most works are designed for individual im-
ages, but Avvenuti et al. [2] take advantage of the temporal correlation between
consecutive frames in order to lower localization and count error.

2.3 Monocular Depth Estimation

The first CNN-based method for monocular depth estimation was presented
by Eigen et al. [9]. They utilized global and local information in order to pre-
dict a depth image from a single image. Further improvements of the pure
CNN approaches focus on Laplacian pyramids [32], multi-scale convolutional
fusion [36], structural information [17], the exploitation of coplanar pixels [28]
to improve the predicted depth, reformulation of the depth prediction task as
a classification-regression problem [11] and hybrids between CNN and vision
transformer-based architectures [8]. Recently, the PixelFormer architecture [1]
combines transformer architectures with an adaptive bin center approach in-
spired by [3] and adds skip connection modules to improve the feature flow
between different encoder feature levels.

3 Method

In the following, we introduce our proposed DustNet architecture illustrated
in Fig. 2. After presenting the submodules, we focus on the different temporal
fusion approaches illustrated in Fig. 3.

3.1 Network Structure

Overview. DustNet processes input image sequences X of the dimensions T ×
H × W × 3 to a continuous dust density map H

2 × W
2 × 1. T may consist of a
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Fig. 4: An opencast mine scene with varying dust densities from the
Meteodata dust dataset. Overall, the dust densities increase from a to e.
Our proposed model DustNet C can well distinguish between clouds and dust,
regress different dust levels, and has a low false positive rate. Overall, DustNet
outperforms the other methods.

maximum of three consecutive images, where the target y is assigned to the im-
age xt0 . The images are fed into the backbone, which produces multiple feature
maps with decreasing resolution and ascending information aggregation. The
backbone features are passed to a pyramid pooling module (PPM) [40] and the
attention feature pyramid network (AFPN). Hereby, in order to reduce the com-
putational complexity, only half of the channels of feature maps are transferred
to the AFPN. The PPM head aggregates global information fed into the AFPN
and the Fuser module. The AFPN mixes the feature maps of different resolutions
and information aggregation levels. The processed feature maps are transferred
to the matcher module, accumulating the features maps into one high-resolution
map. Then, the high-resolution features are merged with the global informa-
tion features aggregated from the PPM head in the fuser module. Eventually,
the combined features are processed by the backend, which consists of multiple
sequences of CNNs, into a dust map.

Backbone. The backbone consists of a stem module and four blocks. We use
this common backbone scheme in order to leverage pre-trained neural networks.
We prefer a convolutional backbone like ResNet [13] instead of a transformer
backbone due to the requirement to process high-resolution images. The back-
bone produces multiple feature maps with the resolution scales { 1

4 ,
1
8 ,

1
16 ,

1
32} of

the original images with the number of channels C of {256, 512, 1024, 2048}.
Pyramid pooling module. We utilized a PPM head [40] like in [38,1] to

aggregate global information of the whole image. We use global average pooling
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of scales {1, 2, 3, 6} to extract the information. After extracting the features, we
concatenate them and process them by a convolutional layer to the feature map
Q4 with the dimension of 512× H

32 × W
32 .

Attention feature pyramid network. The AFPN mixes high-resolution
features with low semantics with low-resolution high semantic features. But in-
stead of a traditional FPN like [20] utilizing CNNs, we are inspired by [1] and
use four Swin blocks with cross window attention to improve the feature flow be-
tween the feature map layers. However, instead of applying scaled dot attention,
we utilize cosine attention similar to [22]. This lead to increased performance in
higher resolutions. The key and value matrix inputs are derived from the back-
bone feature maps, but to reduce computational complexity, we transfer only
half of the channels. The query matrix is filled by the output of the upsampled
stage before. The query matrix with the coarsest resolution originates from the
global aggregated features of the PPM head.

Matcher. The matcher module also has an FPN-like architecture [20]. We
upsample feature maps from the AFPN via a transpose convolution module
(TCM). It consists of a 2D TCM with a stride and kernel size of two, followed by
batch normalization [14] and a SiLU [10] activation function. Like [18] suggests,
we apply only batch normalization without dropout [33]. The coarsest resolution
feature map derived from the AFPN is fed to the first TCM block. The following
AFPN feature maps are respectively concatenated to the output of the TCM
block and processed via the next TCM block. The output of the matcher module
has the dimension of C6 × H

4 × W
4 . We choose a channel number C6 of 256.

Fuser. The fuser module processes the high-resolution features D0 by lever-
aging the aggregated features Q4 of the PPM head. Q4 is fed into a 2D point-
wise convolutional kernel, followed by a SiLU activation function, and pooled
by global average pooling to a feature map W0 of the dimension C6 ×K ×K.
W0 serves as an adaptive kernel for the adaptive convolutional layer [34], which
enriches the feature map D0 from the matcher with global information.

Backend. The backend consists of N blocks of a sequence of a 2D convolu-
tion layer, batch normalization, and SiLU activation functions that predict the
dust map. We branch the features into two parallel blocks for each stage and
accumulate the outputs. Hereby, we choose a dilation of three for one branch
to increase the receptive field. After four stages, a pointwise convolutional layer
predicts the dust maps.

3.2 Temporal Fusion

In order to leverage the temporal information between consecutive images, we
developed and studied different approaches. Fig. 3 illustrates the different fusion
strategies. Hereby the fusion strategy spans from early to late fusion.

Concatenate images. An obvious way to concatenate the images to D ×
H × W is where the product of the number of images T and the number of
channels C is the new channel dimension D. This approach is illustrated in Fig.
3a. Examples of this approach can be found in [5] or [24]. Hereby the backbones
are usually specially adapted to 3D input.
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Fig. 5: Display of the generalization ability of DustNet. The shown re-
sults of DustNet are produced on the URDE validation RandomDataset897 [7].
Hereby, DustNet S is trained on the Meteodata dust dataset and applied on the
URDE dataset without finetuning.

Early multiscale feature fusion. Fig. 3b shows the methodology behind
this fusion aspect. Features from three backbones, which share weights, are fed
into the temporal merger (TM) neural network. TM subtracts the feature maps
of image xt−1 and xt+1 respectively from xt0 and multiplies the difference. We
pass the new feature maps through a 2D pointwise convolutional layer and add
skip connections from the feature maps of the image xt0 to the output.

Late multiscale feature fusion. This approach represents a simple fusion
of AFPN features (see Fig. 3c). Backbone and AFPN weights are shared between
the instances. The PPM head is only fed with the backbone features from image
xt0 . In order to reduce the computational complexity and avoid convergence
problems, only two consecutive images may be used.

Adaptive global information feature fusion. The goal hereby is to cal-
culate the global aggregated features from a PPM head for each image. Backbone
and PPM weights are shared. The local feature branch is only fed with the multi-
scale backbone features from image xt0 . The fusion of the temporal information
occurs in the fuser module. For each PPM head, an adaptive convolutional layer
is added.
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Table 1: Comparison of the best-performing density estimation methods on the
Meteodata dust dataset.

Params MeM Time MAE MSE Acc Pre Rec
CanNet 18 M 4.8 GB 7.1 ms 20.21 855.40 0.79 0.80 0.79
DeepDust 101 M 32.8 GB 20.3 ms 19.60 749.36 0.78 0.80 0.79
PixelFormer 140 M 15.2 GB 43.3 ms 21.53 825.50 0.78 0.81 0.79
NeWCRF 140 M 16.8 GB 36.7 ms 20.00 822.68 0.78 0.80 0.78
DustNet S 64 M 8.8 GB 21.6 ms 19.27 705.47 0.80 0.81 0.80
DustNet A 65 M 8.8 GB 23.5 ms 18.77 701.73 0.79 0.81 0.80
DustNet B 67 M 9.6 GB 46.4 ms 26.60 1528.08 0.67 0.75 0.68
DustNet C 68 M 12.8 GB 37.8 ms 16.77 601.49 0.81 0.83 0.82
DustNet D 86 M 10.4 GB 45.0 ms 17.44 639.10 0.81 0.83 0.81

4 Experimental Results

In this section, we explain our experiment’s implementation details, present and
discuss our achieved results, and finally detail our ablation study and the limi-
tations of our approach.

4.1 Dataset

We conduct experiments on the extended Meteodata dust dataset [27]. The ex-
tended dataset includes a variety of scenes from opencast mines with a wide
range of dust levels, lighting conditions, and cloud conditions. The ground truth
is aimed at mimicking the human perception of dust in a given image regard-
ing opaqueness and estimated dust density levels. The dataset comprises 2298
consecutive RGB image triplets with a 1000× 1920 pixels resolution. An image
triplet consists of three consecutive images with a ground truth dust density
map for the enclosed image. The average time between two consecutive images
amounts to ten seconds. The pixels of the ground truth span are mapped to an
8-bit unsigned integer datatype, where the pixel values are proportional to the
dust density. We split the dataset into a training dataset with 1906, a validation
dataset with 144, and a test dataset with 248 image triplets. The challenges of
this dataset are manifold. The high resolution of the images is a high computa-
tional burden.

Furthermore, the strong variance in dust levels, in combination with the
highly imbalanced frequency of the different dust levels, complicates the estima-
tion of the different dust levels. In order to display the generalization ability of
our approach and the dust dataset, we also conduct a qualitative analysis on
the URDE dataset [7]. It consists of images with a size of 1024×1024 pixels and
contains scenes on dusty roads.
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Table 2: Binned regression results of density estimation methods on the Me-
teodata dust dataset: The values of the pixels are binned into zero dust (ZB),
low dust (LB), medium dust (MB), and high dust (HB) density. Overall, our
proposed DustNet C outperforms the other methods.

MAE MSE
ØB ZB LB MB HB ØB ZB LB MB HB

CanNet 38.08 12.04 23.61 42.65 74.01 2917.5 376.6 856.4 2540.3 7896.8
DeepDust 30.11 12.18 23.93 37.04 47.28 1640.2 367.5 873.3 1979.9 3340.2
PixelFormer 40.68 14.19 25.00 36.05 87.48 2864.6 377.1 892.5 1863.6 8325.3
NeWCRF 34.19 10.88 25.24 40.82 59.81 2255.0 324.9 954.5 2371.2 5369.3
DustNet S 31.35 12.41 22.35 39.45 51.20 1756.6 340.8 754.7 2152.6 3778.1
DustNet A 32.21 10.36 23.17 40.61 54.68 1837.3 281.8 795.0 2195.5 4076.9
Dustnet B 64.05 7.95 34.85 77.80 135.61 6948.3 151.1 1553.7 6698.8 19389.4
DustNet C 27.29 8.70 21.97 33.29 45.19 1361.7 257.4 738.9 1579.2 2871.3
DustNet D 31.13 8.24 22.36 41.59 52.33 1767.1 189.4 742.9 2295.1 3841.0

Table 3: Results of the ablation study on the Meteodata dust dataset: The
base model is DustNet C with two consecutive images as inputs. The modules
following a ✗ are replaced.

Params MeM Time MAE MSE Acc Pre Rec
1x Img Input 64 M 8.8 GB 21.6 ms 19.27 705.47 0.80 0.81 0.80
2x Img Input 68 M 12.8 GB 37.8 ms 16.77 601.49 0.81 0.83 0.82
3x Img Input 68 M 16.0 GB 64.6 ms 17.83 675.34 0.81 0.82 0.82
✗ AFPN 32 M 7.2 GB 27.3 ms 19.85 805.74 0.79 0.80 0.79
✗ Fuser 68 M 12.8 GB 38.0 ms 19.63 754.25 0.80 0.81 0.80
✗ Matcher 64 M 12.0 GB 29.5 ms 17.08 651.39 0.83 0.83 0.83

4.2 Benchmark Selection

Temporal dust density estimation is not well-researched. To our best knowledge,
only DeepDust [27] focuses on a directly related task. Methods like temporal
density estimation methods from other domains, like crowd counting [2], are not
designed for a large time lag between two consecutive images and high-resolution
scenes and therefore have convergence problems. From the methods available, we
selected, in addition to DeepDust, CanNet [21], a lightweight fully convolutional
crowd-counting approach and two state-of-the-art MDE models represented by
NeWCRF [38] and PixelFormer [1]. For both MDE methods, we select as a
backbone the base swin transformer [23] model with a window size of twelve.

4.3 Implementation Details

All experiments are conducted on four Nvidia A100 GPUs with 80 GB memory.
We use l2 loss and the AdamW [25] optimizer (β1 = 0.9, β2 = 0.999) with a
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Fig. 6: Opencast mines. Results of DustNet C on mine sites that are not in-
cluded in the training or validation dataset.

weight decay of 10−5. During training, we start with a learning rate of α = 3·10−4

and train for 50 epochs with a frozen backbone. After 50 epochs, we unfreeze
the backbone and train for further 20 epochs.

Our proposed networks are trained with a ResNet101 [13] backbone. We de-
ploy the following proposed architectures: DustNet S is the version of DustNet
as shown in Fig. 2. It processes only a single image. DustNet A is equivalent to
Fig. 3a. Compared to DustNet S, the capacity for input channels is increased to
nine channels. DustNet B consists of three backbones with shared weights and
a temporal merger module (Fig. 3b). DustNet C takes only two consecutive
images as input (Fig. 3c). It merges the multiscale AFPN features. DustNet
D consists of multiple backbones and PPM heads with shared weights (Fig.
3d). Each aggregated global information feature map from the PPM head is an
adaptive weight.

4.4 Evaluation Metrics

We are interested in the localization and regression ability of our proposed mod-
els. We map all pixel values under 30 to zero and the remaining pixels to one
to validate the localization aspect. This threshold was derived from the labeling
process of the Meteodata dust dataset, which maps all values under 30 to zero.
As a result, we can now apply standard classification metrics like accuracy (Acc),
precision (Pre), and recall (Rec). In order to validate the quality of the predicted
regression, we use standard metrics represented by mean absolute error (MAE)
and mean squared error (MSE). Furthermore, to fairly assess the performance
on tail values of imbalanced datasets, we consider the idea of balanced metrics
[4]. Therefore, we bin our data into four bins: zero dust density bin (ZB), low
dust density bin (LB), medium dust density bin (MB), and high dust density
bin (HB). For each bin, we calculate the MAE and MSE. Following [4,29], we
compute the mean across all bins and obtain the average binned mean absolute
error ØB-MAE and the average binned mean squared error ØB-MSE.

4.5 Quantitative Results

Table 1 compares the best-performing density estimation methods on the Meteo-
data dust dataset. The best-performing model on a single image is our proposed
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DustNet S, and the best-performing model for consecutive images is our Dust-
Net C. In particular, in the case of the binned regression metrics (see Table
2), DustNet C outperforms the other methods vastly. Due to the imbalance
of the dataset, a small difference in the metrics can lead to a big qualitative
difference. CanNet is the most computationally efficient method tested on the
Meteodata dust dataset and can classify dust decently but cannot regress well
in the higher dust levels. PixelFormer performs worse regarding regression. Pos-
sible reasons include the inability of the Swin transformer backbone to process
high-resolution images well and the adaptive bin center prediction module. The
Swin transformer backbone and the conditional random field modules could also
influence NeWCRF’s performance. DustNet’s performance gain over DeepDust
could be caused by the improved feature flow, particularly between high- and
low-level features.

4.6 Qualitative Results

Fig. 4 illustrates an opencast mining scene with varying dust densities from
the Meteodata dust dataset. The overall airborne dust in the scene increases
from a to e. Fig. 4a demonstrates the ability of DustNet to distinguish between
dust, shadows, and clouds. The other methods lack the ability to differentiate
in comparison to DustNet. From Fig. 4c, our method shows its performance
on more specific singular dust plumes. Finally, in Fig. 4d and e, our method
performs well in more dense dust scenes. Nearly in all cases, our model surpasses
the other approaches.

Fig. 6 shows the result of DustNet C on further mining sites displayed. Here
again, DustNet is able to produce good results. In order to demonstrate the
generalization ability of our approach, we applied a DustNet S without retraining
on the URDE dataset. Also, as seen in the images, our DustNet S displays a
good performance. Due to the hard segmentation boundaries and the neglect of
low dust density on the URDE dataset, a quantitative evaluation would, in our
opinion, not be appropriate.

4.7 Ablation Study

In order to show the efficacy of our proposed method, we choose the best-
performing proposed architecture DustNet C, change the number of input images
and replace several modules (see Table 3). We replace the AFPN, the matcher,
and the fuser module, respectively.

Inputs. We compare the performance change of our proposed method in
varying the number of consecutive images. Backbone and AFPN weights are
shared in our experiment. The use of two consecutive images outperforms the
other options.

AFPN. In the AFPN ablation experiment, the AFPN is removed, and the
features from the backbone are passed directly to the matcher. Removing the
AFPN halves nearly the number of parameters, but it causes a big increase in
MAE and MSE.
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Matcher. In the matcher ablation experiment, we replace the matcher with
a simple convolutional layer followed by an activation function for channel adap-
tion. The feature map with the highest resolution from the AFPN is processed
by the added convolutional layer and fed into the fuser module. The accuracy
increases slightly for the tradeoff of a decreased regression ability. But the main
reason for keeping the matcher is the increased differentiation ability between
dust and similar visual effects like clouds. Removing the matcher leads to a
significant drop.

Fuser. In the last ablation experiment, a traditional convolutional layer re-
places the adaptive convolutional layer. Hence, the aggregated global information
features cannot enrich the matcher’s features. This leads to a significant increase
in MAE and MSE.

4.8 Limitations and Future Work

Fig. 4c illustrates one of the shortcomings of our model. Our model can easily
ignore small plumes of dust. We assume that neglecting small dust areas for the
tradeoff of fewer false positives leads to a lower loss and therefore is a negative
side effect of the training process. Also, we suppose that the l2 loss function
leads to a worse MSE in bins with scarcer values (see Table 2). Furthermore, the
ground truth of the Meteodata dust dataset has a high uncertainty compared
to a classification or object detection dataset. For example, in Fig. 4g, we as-
sume that our model represents the real dust conditions than the ground truth.
The ground truth does not cover the small dust plume behind the truck, and
overall undervalues the dust density in the dense dust plumes. Therefore a bet-
ter metrical result causes not automatically a higher performance in a real-world
scenario. An extensive comparison between density estimation and semantic seg-
mentation of dust could be a valuable extension of this work. Furthermore, future
work should address handling long-tailed visual regression data and increase the
sensitivity for smaller dust plumes.

5 Conclusion

In this paper, we have presented DustNet, a dust density estimation neural net-
work. DustNet computes for every pixel in a given image a dust density. Hereby
DustNet exploits and fuses local, global, and temporal information. DustNet
cannot only regress different dust levels but also distinguish between dust and
similar visual effects like clouds. Our proposed approach outperforms a range of
other approaches on the Meteodata dust dataset.
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