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Abstract. Early detection of cardiac dysfunction through routine screen-
ing is vital for diagnosing cardiovascular diseases. An important metric of
cardiac function is the left ventricular ejection fraction (EF), where lower
EF is associated with cardiomyopathy. Echocardiography is a popular di-
agnostic tool in cardiology, with ultrasound being a low-cost, real-time,
and non-ionizing technology. However, human assessment of echocardio-
grams for calculating EF is time-consuming and expertise-demanding,
raising the need for an automated approach. In this work, we propose
using the M(otion)-mode of echocardiograms for estimating the EF and
classifying cardiomyopathy. We generate multiple artificial M-mode im-
ages from a single echocardiogram and combine them using off-the-shelf
model architectures. Additionally, we extend contrastive learning (CL)
to cardiac imaging to learn meaningful representations from exploiting
structures in unlabeled data allowing the model to achieve high accuracy,
even with limited annotations. Our experiments show that the supervised
setting converges with only ten modes and is comparable to the baseline
method while bypassing its cumbersome training process and being com-
putationally much more efficient. Furthermore, CL using M-mode images
is helpful for limited data scenarios, such as having labels for only 200
patients, which is common in medical applications.

Keywords: Echocardiography · M-mode Ultrasound · Ejection Fraction
· Computer Assisted Diagnosis (CAD)

1 Introduction

Cardiovascular diseases (CVD) are the leading cause of death worldwide, re-
sponsible for nearly one-third of global deaths [29]. Early assessment of cardiac
dysfunction through routine screening is essential, as clinical management and
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behavioral changes can prevent hospitalizations and premature deaths. An im-
portant metric for assessing cardiac (dys)function is the left ventricular (LV)
ejection fraction (EF), which evaluates the ratio between LV end-systolic and
end-diastolic volumes [3, 21].

Echocardiography is the most common and readily available diagnostic tool
to assess cardiac function, ultrasound (US) imaging being a low-cost, non-ionizing,
and rapid technology. However, the manual evaluation of echocardiograms is
time-consuming, operator-dependent, and expertise-demanding. Thus, there is a
clear need for an automated method to assist clinicians in estimating EF.

M(otion)-mode is a form of US, in which a single scan line is emitted and
received at a high frame rate through time to evaluate the dynamics to assess
different diseases [23]. M-mode is often utilized in clinical practice e. g. in lung
ultrasonography [1, 25] or echocardiography [6, 7, 26, 10]. Since cardiac func-
tion assessment relies on heart dynamics, M-mode images can be an excellent
alternative to B(rightness)-mode image- or video-based methods. However, little
effort is directed toward exploiting M-mode images in an automated manner.

Data collection and annotation are expensive for most applications. There-
fore, learning from limited labeled data is critical in data-limited problems, such
as in healthcare. To overcome this data bottleneck, self-supervised learning (SSL)
methods have been recently proposed to learn meaningful high-level representa-
tions from unlabeled data [16, 24].
Related Work A few existing works [14, 18] reconstruct M-mode images from
B-mode videos to detect pneumothorax using CNNs. Furthermore, authors in
[27] propose an automatic landmark localization method in M-mode images. A
more related method using M-mode images in an automated manner to estimate
EF is [22], which uses single M-mode images in parasternal long-axis view to
measure chamber dimensions for calculating EF.

For automated EF prediction, some previous works exploit either still-images
[17, 31, 8] or spatio-temporal convolutions on B(rightness)-mode echocardiogra-
phy videos [21]. However, still-image-based methods have a high variability [20],
and video-based methods rely on a complex pipeline with larger models. Further-
more, [19] uses vision transformers and CNNs to tackle the problem of estimating
the LV EF, and [15] uses geometric features of the LV derived from ECG video
frames to estimate EF. The authors in [28] evaluate ML-based methods in a
multi-cohort setting using different imaging modalities. In the SSL setting, [5]
propose a contrastive learning framework for deep image regression, which con-
sists of a feature learning branch via a novel adaptive-margin contrastive loss
and a regression prediction branch using echocardiography frames as input.
Our Contribution We propose to extract images from readily available B-mode
echocardiogram videos, each mimicking an M-mode image from a different scan
line of the heart. We combine the different artificial M-mode images using off-
the-shelf model architectures and estimate their EF to diagnose cardiomyopathy
in a supervised regime. Using M-mode images allows the model to naturally
observe the motion and sample the heart from different angles while bypassing
cumbersome 3D models. Secondly, we propose an alternative scheme for pre-
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dicting EF using generated M-mode images in a self-supervised fashion while
extending contrastive learning. We design a problem-specific contrastive loss for
M-mode images to learn representations with structure and patient awareness.
We evaluate both regimes on the publicly available EchoNet-Dynamic dataset
([20]) and demonstrate both models’ effectiveness.

To the best of our knowledge, this is the first work on image-based and tem-
poral information incorporating cardiac function prediction methods to estimate
EF. Furthermore, our method can easily be applied to other problems where car-
diac dynamics play an essential role in the diagnosis. To ensure reproducibility,
we made the code available: https://github.com/thomassutter/mmodeecho.

2 Methods

This work aims to create a pipeline with as little intervention as possible; thus,
our method consists of two parts, as shown in Figure 1. The first part is extracting
M-mode images from readily available B-mode videos. The second part includes
representation learning, which are lower-level information that preserves more
information of the input image and are used to predict EF from M-mode images,
including two schemes: supervised and self-supervised learning.

2.1 From B-mode Videos to M-mode Images

Assume our dataset contains N patients. For each patient i = {1, 2, · · · , N}, the
label yi indicates its EF. Furthermore, the B-mode echocardiogram video of each
patient i is given of size h× w × t with h being height, w width, and t number
of frames of the video. The m-th M-mode image of patient i is given as xm

i with
m = {1, 2, · · · ,M}. It is a single line of pixels through the center of the image
with an angle θm over frames, assuming LV is around the center throughout
the video, as in Figure 1(a). This image, corresponding to θm, is then of size
sm × t, with sm as the length of the scan line. For simplicity, we set sm = h ∀ m
independent of its angle θm. For generating multiple M-mode images, a set of M
angles θ = [θ1, . . . , θM ] is used to generate M M-mode images, where the angles
θ are equally spaced between 0◦ and 180◦.

While the proposed approach for generating M-mode images is intuitive and
works well (see Section 3.3), other approaches are also feasible. For instance, the
center of rotation in the middle of the image in our M-mode generation process
could be changed. Like that, we could mimic the behavior of the data collection
process as every generated M-mode image would resemble a scan line of the US
probe. However, the main goal of this work is to highlight the potential of M-
mode images for the analysis of US videos. Given our convincing results, we leave
the exploration of different M-mode generation mechanisms for future work.

2.2 Learning Representations from M-mode Images

Supervised Learning for EF Prediction We aim to learn supervised rep-
resentations using off-the-shelf model architectures to estimate EF. Instead of

https://github.com/thomassutter/mmodeecho
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Fig. 1: Overview of our proposed method. (a) Generate M-mode images from B-
mode echocardiography videos at different scan lines. (b) Learn representations
from the generated M-mode images using supervised and self-supervised learning
schemes. (c) Evaluate EF prediction to diagnose cardiomyopathy.

using a single M-mode, one can aggregate the information of M-mode images
from the same patient to increase robustness. We evaluate two fusion methods
for aggregating information among the M M-mode images: early-fusion and late-
fusion [2]. With early fusion, we construct a M×s×t image with the M M-mode
images being the M channels of the newly created image. In late-fusion, we ex-
ploit three different methods. For all of the late-fusion schemes, we first infer
an abstract representation zm

i for every M-mode image xm
i . The representations

zm
i are then aggregated to a joint representation z̃i using an LSTM cell [11],

averaging, or concatenating.

We utilize a standard ResNet architecture [9] with 2D-convolutional layers
independent of the fusion principle. With 2D-convolutions, we assume a single
M-mode image as a 2D gray-scale image with two spatial dimensions, s and t.
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Fig. 2: Overview of our proposed SSL method. The contrastive loss includes (a)
patient awareness to attract similarity between data from the same patient while
discouraging it between different patients and (b) structure awareness to take
the (possible) dissimilarity from the same patient into account.

Self-Supervised Learning for EF Prediction This part aims to learn mean-
ingful representations from unlabeled data to estimate EF using echocardio-
grams. To this end, we propose an SSL scheme for M-mode images based on
contrastive learning, where M-mode images from the same patient can naturally
serve as positive pairs since they share labels for many downstream tasks. As
discussed by [30], bio-signal data is inherently highly heterogeneous; thus, when
applying learning-based methods to patient data, we need to consider both the
similarity and the difference between samples originating from the same patient.
Thus, we propose a problem-specific contrastive loss with patient and structure
awareness, as shown in Figure 2.
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Fig. 3: Schema of the contrastive learning framework with training and evaluation
stages. The training stage exploits the contrastive loss to learn a representation
leveraging the unlabelled images. The evaluation stage exploits these learned
representations in a supervised manner to predict EF.

Contrastive Learning Framework The framework contains training and evalu-
ation stages and the overview is illustrated in Figure 3. In the training stage,
we optimize the model with the contrastive loss leveraging the information from
underlying structures of the unlabeled images. In the evaluation stage, a multi-
layer perceptron (MLP) head is trained on top of the learned representations in
a supervised manner.

For each generated M-mode image xm
i , we generate its augmented view

x
v(m)
i using the Aug(·) module. So the augmented dataset is represented as

{(xm
i , x

v(m)
i , yi)}. The encoder network Enc(·) maps each image xm

i to a fea-
ture vector zm

i . We utilize a standard ResNet architecture [9].

In the training stage, zm
i is normalized to the unit hyper-sphere before be-

ing passed to the projection network. Following the work [4], we introduce a
learnable non-linear projection network between the representation and the con-
trastive loss. The projection network Proj(·) takes the normalized lower-level
representation zm

i as input and outputs the higher-level representation pm
i . We

use a two-layer MLP with ReLU activation as Proj(·) in this work.

In the evaluation stage, we initialize the parameters of the encoder network
Enc(·) with the model obtained from contrastive learning and add an MLP head
Head(·) to the top. For each patient i, we have M feature vectors zm

i ∈ RK . The
M vectors are then fused to get the joint representation z̃i ∈ RK×M and passed
to Head(·). One can have different fusion methods for aggregating information
among the M vectors, e. g. using an LSTM cell [11], averaging, or concatenating.
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Contrastive Loss for M-mode Images To account for (dis)similarities, we design
two loss functions for learning both patient- and structure-awareness.

(a) Patient-aware loss: The goal is to attract the representations from the same
patient to be similar while pushing apart representations from different patients
(see Figure 2 (a)). This enforces two M-mode images to be considered similar if
they are from the same patient and dissimilar if they are from different patients.
The patient-aware loss is given as:

LPA = − 1

M − 1

N∑
i=1

M∑
m=1

∑
l ̸=m

log
exp(pm

i · pl
i/τ)∑

j,k exp(p
m
i · pk

j /τ)− exp(pm
i · pm

i /τ)
(1)

where N is the number of patients in one batch, M is the number of original M-
mode images used for each patient, and τ is the temperature scaling parameter.
The term pm

i represents the output of Proj(·).
Inspired by [30], we tried defining a neighborhood function to limit the sim-

ilarity of M-mode images from the same patient. However, incorporating neigh-
bourhood to patient-awareness did not further improve the results; thus, we used
all M-mode images per patient to define the patient-aware loss.

(b) Structure-aware loss: If we only use patient-aware loss LPA, there exists a
risk that all images from the same patient collapse to a single point [30]. So we
propose the structure-aware loss to introduce some diversity (see Figure 2 (b)).
To incorporate this into the learned representations, we construct positive pairs
from each M-mode image with its augmentation and consider other combinations
as negative pairs. It is then defined as:

LSA = −
N∑
i=1

2M∑
m=1

log
exp(pm

i · pv(m)
i /τ)∑

l ̸=m exp(pm
i · pl

i/τ)
(2)

If image m is an original image, then v(m) represents its augmented view; if
image m is an augmented image, then v(m) represents the original image. Min-
imizing LSA drives the representation pairs from the augmented images in the
numerator close while pushing the representations in the denominator far away,
where the denominator contains M-mode images from the same patient.

Finally, we combine the two losses to get structure-aware and patient-aware
contrastive loss for M-mode images using the hyperparameter α to control the
trade-off between the awareness terms:

LCL = αLPA + (1− α)LSA. (3)

3 Experiments and Results

3.1 Dataset

We use the publicly available EchoNet-Dynamic dataset [20]. It contains 10′030
apical-4-chamber echocardiography videos from individuals who underwent imag-
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ing between 2016-2018 as part of routine clinical care at Stanford University
Hospital. Each B-mode video was cropped and masked to remove information
outside the scanning sector and downsampled into standardized 112× 112 pixel
videos. For simplicity, we used videos with at least 112 frames. We use the official
splits with 7465 training, 1289 validation, and 1282 test set samples.

3.2 Experimental Setup

We evaluate the models’ performance using classification accuracy for five ran-
dom seeds and report the mean performance and standard deviation. During
training, all supervised models optimize the estimation of EF as a regression
task. For testing, we use a constant threshold τ for classifying cardiomyopathy.
In all experiments, we set τ = 0.5. Hence, an estimation of τ̂ < 0.5 results in
classifying a sample as cardiomyopathic.

We evaluate all models using the area under the receiver operating char-
acteristic (AUROC) and the area under the precision-recall curve (AUPRC)
with respect to whether a patient is correctly classified as healthy or cardiomy-
opathic. Additionally, we report the mean absolute error (MAE) and the root
mean squared error (RMSE) of the predicted EF with respect to the true EF in
the Supplementary Material. We report the mean performance, including stan-
dard deviations over five random seeds for all results.

We use the training set from EchoNet for pre-training (SSL), and apply a
linear learning rate scheduler during the first 30 epochs as warm-up. For the
supervised fine-tuning, we select different proportions of the training set in the
limited labeled data scenario. All M-mode models are trained for 100 epochs
using Adam optimizer [12] with an initial learning rate of 0.001 and a batch size of
64. For image augmentation, we apply random horizontal flip and Gaussian noise.
For the fusion method of the the M-mode representations we used concatenation.
For the EchoNet model, we use the same model and parameters as in [21]. The
model is trained for 45 epochs with a learning rate of 0.0001 and a batch size of
20. We do not use test-time augmentation for any of the models. We report the
full set of hyperparameters used in our experiments in Table 1.

3.3 Results and Discussion

Evaluating M-mode Images in Supervised Setting We train and evaluate
models with different numbers of M-modes for M ∈ {1, 2, 5, 10, 20, 50}. We use
the complete training set, including labels, as we are interested in the perfor-
mance of the models depending on the number of available M-modes. Figure 4
shows the results for different numbers of M-modes. We see that late fusion
models benefit from an increasing number of modes, whereas the early fusion
method overfits quickly and never achieves a comparable performance.

Evaluating Limited Data Regime We evaluate the accuracy of the different
models introduced in Section 2 for different amount of labeled training samples.
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(a) AUPRC (b) AUROC

(c) RMSE (d) MAE

(e) R2

Fig. 4: Performance for different numbers of M-mode images using early and late-
fusion methods. In (a), we evaluate the classification performance with respect to
AUPRC and AUROC in (b), the regression performance with respect to RMSE
in (c), MAE in (d), and R2-score in (e).
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Table 1: List the hyperparameters used in our experiments. We use the same
hyper-parameters for E2E setup and the fine-tuning stage of SSL setup (denoted
as "_sup" in Table 1). "_cl" denotes the hyper-parameters used in the SSL pre-
training stage.

Parameter Value Description

lr_sup 0.001 learning rate for supervised training
lr_cl 1.0 learning rate for SSL training
opt Adam optimizer for SSL and supervised training

bsz_sup 64 batch size for supervised training
bsz_cl 256 batch size for SSL training

epoch_sup 100 epochs for supervised training
epoch_cl 300 epochs for SSL training

epoch_warm 30 warm-up epochs for SSL training
α 0.8 loss trade-off
τ 0.01 temperature scaling

Dim_e 512 Enc(·) output dimension
Dim_ph 2048 Proj(·) hidden layer dimension
Dim_po 128 Proj(·) output dimension

Dim_lstm 256 LSTM output dimension

As most medical datasets do not have the size of EchoNet-Dynamic [13], methods
for medical machine learning should perform best in the limited labeled data
regime. We use E2E for the supervised and CL for the self-supervised setting.

Additionally, we introduce E2E+ and CL+, which, inspired by EchoNet [21],
uses random short clips for each training epoch. Both models use M-mode images
of 32 frames with a sampling period of 2. We train and evaluate models using
p% of the full training set for p ∈ {1, 2, 3, 5, 10, 20, 30, 50, 75, 100}. All M-mode
methods are trained with M = 10.

Figure 5 shows the limited labeled data experiment results. Although we
are not able to reach the performance of the EchoNet model for any number
of modes (see Figure 4b) if the number of labeled training samples is high (see
Figure 5a), both supervised and self-supervised learning methods using M-mode
instead of B-mode can outperform the EchoNet model in the low labeled data
regime (p < 5%, Figure 5b). Also, we observe that using shorter clips is useful
for the self-supervised learning methods, with CL+ being able to achieve an
AUROC over 0.85 with only around 200 labeled samples.

Computational Cost Furthermore, we compare the number of parameters
and computational costs for different models in Table 2, where we used a multi-
GPU setup with four NVIDIA GeForce RTX 2080 Ti GPUs. We report the
computation time in seconds per batch (sec/B) and milliseconds per sample
(msec/sample), and the memory requirements in gigabytes per batch (GB/B).

Our proposed M-mode image based models require around six times less time
and ten times less memory to train and run inference per sample. Given the used
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2
(a) 10% - 100% (b) 1% - 10%

Fig. 5: Results for different training set sizes using the proposed end-to-end su-
pervised (E2E) and contrastive learning (CL) approaches. In (a), we train and
evaluate the models on 10%-100% labeled training samples, in (b) only on 1%-
10% of the samples. E2E and CL models are trained using a fixed long clip with
length 112; E2E+ and CL+ are trained using random short clips with length 32.
CL freeze and CL+ freeze are fine-tuned with the encoder parameters frozen.

memory per batch, we could increase the batch size for the M-mode methods,
lowering the computation time per sample even further, whereas the baseline
model is already at the limit due to its architecture.

4 Discussion and Conclusion

In this work, we propose to generate M-mode images from readily available B-
mode echocardiography videos and fuse these to estimate EF and, thus, cardiac
dysfunction. Our results show that M-mode-based prediction methods are com-
parable to the baseline method while avoiding its complex training routine and
reducing the computational cost and the need for expensive expert input.

Table 2: Computational costs. We evaluate the EchoNet and the proposed M-
mode methods with respect to the number of parameters, the computation time,
and the memory requirements. All M-mode models are evaluated using M = 10.
E2E defines the end-to-end supervised and CL the contrastive learning approach.

Time (sec/B) Time (msec/sample) Memory (GB/B)

Model BS #Params (Mio.) Train Test Train Test Train Test

EchoNet 20 31.5 2.898 2.474 144.9 123.7 5.294 1.187
E2E & CL 64 11.7 1.568 1.330 24.5 21.1 1.013 0.120
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Conventional M-mode images have a very high sampling rate, which results in
a high temporal resolution so that even very rapid motion can be recorded. The
generated M-mode images have significantly less temporal resolution than the
conventional M-mode images from US machines. However, our results indicate
that exploiting generated M-mode images does not limit the performance for EF
estimation. As we do not use the M-mode images collected directly from the US
machines, there is no need for an additional data collection step.

Additionally, we show the potential of pre-trained methods. In scenarios
where expensive expert labels are not readily available, pre-training using unla-
beled M-mode images outperforms more complicated pipelines highlighting the
potential of M-Mode based pipelines for clinical use cases. In our future work,
we want to investigate the use cases for M-mode on different diseases and further
improve the performance of the proposed pre-training pipeline.
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