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Abstract. Optical Coherence Tomography Angiography (OCTA) ex-
tends the 3D structural representation of the retina from conventional
OCT with an additional representation of "flow" and is used as non-
invasive angiography technique in ophthalmology today. While there are
several works for the segmentation of vascular network in OCTA im-
ages, most of them are tested on 2D enface images (top view projection)
only. Such 2D enface images have the drawback that they depend on a
good 3D segmentation of retinal layers, the so-called slabs. Especially in
case of retinal diseases (e.g. exudations of the retina) this segmentation
is not always clear, even for medical experts. In contrast, we consider
the problem of full 3D segmentation of retinal vessels in OCTA images.
We present the dataset MORE3D (Münster Octa REtina 3D dataset)
that is the first one with 3D annotation. We introduce a general flatten-
ing transformation that simplifies and accelerates the 3D data labeling
and processing, and also enables a specialized data augmentation. More-
over, we realize a hybrid U-net to achieve a first reference segmentation
performance on our dataset. In addition to the common performance
metrics we also apply skeleton-based metrics for a more comprehensive
structural performance evaluation. With this work we contribute to the
advancement of 3D retinal vessel segmentation in OCTA volumes.

Keywords: Optical Coherence Tomography Angiography · 3D anno-
tated dataset · flattening transformation · vascular network segmenta-
tion.

1 Introduction

The OCT technology enables deep scanning of the retinal layers and provides
a 3D structural representation of the retinal layers. The OCT angiography in-
troduced in 2014 [39] extends the structural OCT by the “flow”. For each voxel
the variation in time of the reflected laser spectrum is measured [16]. This vari-
ation is mainly caused by the travel of erythrocytes in the blood. The resulting
OCTA volume represents the “flow”. Besides motion artifacts during the im-
age capture, there are projection artifacts and a rather large proportion of white
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Fig. 1. Visualization of a volume with vessels crossing in different depths. From left to
right: single 2D slice, rendered 3D volume, 2D projection (enface image).

noise. The morphology of the vascular network is a suitable biomarker for various
pathological changes of the retina [10]. This has been demonstrated especially
in quantitative morphological analysis of choroidal neovascularisations (CNV)
in neovascular age-related macular degeneration (nAMD), which is the most
common cause for legal blindness in the western world.

Currently, most algorithms realize vessel segmentation by a depth-limited 2D
projection within anatomical retinal layers. A 2D OCTA enface image is gen-
erated pixel-wise by aggregating (e.g. averaging, maximum, or minimum) the
flow information of the corresponding voxel stack in the specific retinal layer
(slab). Depending on the manufacturer of the OCTA device there are different
segmentation layers. In this paper we have used the AvantiTM from OptoVue,
which segments the retinal vascular layers into a) the superficial vascular plexus,
limited by the inner limiting membrane (ILM) and inner plexiform layer (IPL) -9
µm, and b) the deep vascular plexus, limited by IPL -9 µm and outer plexiform
layer (OPL) +9 µm. Furthermore, c) the outer retina and d) the choriocapillaris
are defined. For each of these so-called slabs a 2D enface OCTA image is gener-
ated by the AvantiTM software. Other OCTA manufactors have slightly different
slab definitions but the approach to reduce the data to 2D enface images is the
same. This 2D-projection procedure has the drawback that it depends on a good
segmentation of morphological retinal layers (slabs). Especially in case of reti-
nal diseases (e.g. exudations of the retina, disordering of retinal layers) the slab
segmentation is not always clear, even for medical experts.

In this work we consider full 3D segmentation in OCTA images. Such a
segmentation helps distinguish vessels that are merged in 2D images due to pro-
jection. For example, vessels in different depths of the retina may be crossing in
the enface image (see Figure 1). A full segmentation in 3D OCTA is challeng-
ing due to the different sources of noise. Additionally, segmentation inaccuracy
affects differently on popular performance metrics for 2D and 3D cases, see the
discussion in Section 2.

Related work. There exist a few publicly available datasets with OCTA enface
images: ROSE [30], OCTA-500 [21], FAROS [43], see more details in Section 2.
However, there is no publicly available OCTA dataset with 3D manual vessel
annotations yet.
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OCTA dataset Data Ground Truth
OCTA-500 [21] 3D volumes 2D pixel level (enface image)
ROSE [30] 3D volumes 2D pixel level (enface image) or centerlines only
FAROS [43] 3D volumes 2D pixel level (enface image)
Our dataset MORE3D 3D volumes 3D voxel level

Table 1. Comparison of datasets of OCTA images.

A survey on segmentation and classification methods for OCTA images can
be found in [32]. Numerous works exist for vesselness computation [19] and
vesselness segmentation in 2D retinal fundus images [18,41]. Recent works have
addressed several problems using OCTA, e.g. enhancement [27], quantification of
choroidal neovascularization [42], detection of diabetic retinopathy [7], 3D shape
modeling of retinal microvasculature [46], and 3D retinal vessel density mapping
[35]. Relatively few work deals with the segmentation of vascular network in
OCTA images. They verify on 2D enface images only [3,6,8,13,14,22,24,26,28,31]
or segment 3D vessels without related ground truth [33,46].
Contributions. Our key contributions are: 1) A flattening transformation de-
dicated to 3D OCTA images to simplify and accelerate the 3D data labeling
and processing. It also enables a specialized data augmentation. 2) A novel 3D
OCTA dataset with 3D labeled vessel network. To our knowledge it is the first
one of this kind in the literature. 3) A hybrid U-net that achieves a first reference
segmentation performance on our dataset based on an integration of vesselness
measures and different data sources. 4) In addition to the popular voxel-based
performance metrics we also apply skeleton-based evaluation metrics to study
structural quality of segmentation. Generally, with our work we also resolve the
problem of the dependence on an appropriate pre-segmentation for 2D enface
images.

2 2D vs. 3D vessel detection

Here we briefly discuss differences between 2D and 3D vessel detection.
Datasets. In this paper we present the first 3D OCTA dataset MORE3D with
3D labeled vessel network. As shown in Figure 2, the 3D ground truth provides a
much more detailed view of the structure of the vessels: The overall curvation, the
different diameters in depth or even small crossings from one vessel above another
(compare Figure 1). To our best knowledge, there are three datasets containing
3D OCTA volumes [21,30,43]. But they only include 2D labeled ground truth
(see Table 1 for a comparison).

Segmenting and analyzing the retinal vascular structure in 3D offers many
advantages in comparison to processing 2D enface images. The retinal vascula-
ture is morphologically differentiated by their (increasing) distance to the ILM
in a superficial, intermediate, and deep plexus [20]. Many pathologies affect the
plexus differently [1,38]. In practice, medical experts still use individual enface
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Fig. 2. 3D ground truth.

Fig. 3. Profile of a perfectly round vessel
(white) in 2D (left) and 3D (right), where
the orange visualizes the area when 1/6
higher diameter than the real vessel is seg-
mented.

images. With our presented method, the 3D structure of the vessels is made
directly available, which simplifies the working of medical experts.
Complexity of vessel detection. Before we introduce the performance metrics
in Section 6 we want to emphasize that the absolute values of derived metrics
have different significance in 2D (e.g. enface image based processing) and 3D
(e.g. our work based on 3D annotation). If we overestimate the diameter r of
the vessel by p percent (see Figure 3), then we can determine the True Positive
Rate and similarly the Positive Predictive Value if we underestimate the vessel
diameter by p percent (see Appendix for the formulas). For example, with p = 0.2
we have TPR2D = 0.8333 but only TPR3D = 0.6944 and PPV2D = 0.8 but only
PPV3D = 0.64 for a vessel like in Figure 3. So if we compare the values of 2D and
3D metrics where TPR or PPV are involved we should take into account that
the 3D values are always lower for similar performing algorithm compared to a
2D case. For the False Positive rate (FPR) the influence is much lower, since in
retinal vessel segmentation tasks the amount of negatives in the ground truth is
much greater than the amount of positives and therefore usually TN >> FP .

3 Flattening transformation for 3D OCTA images

We want to take advantage of the physiology of the eye. The retinal vascu-
lar network evolves parallel to the Internal Limiting Membrane (ILM) of the
surface of the retina. Thus, we can transform the OCTA image so that the vas-
cular network subsequently evolves in the x/y plane. We call this the "flattening
transformation".

Let I(x, y, z) be a 3D OCTA image. We define the 3D vascular network
V (x, y, z) and function fI(x, y) by:

V (x, y, z) =

{
1, if vascular network
0, otherwise

, fI(x, y) = {z, where (x, y, z) ∈ ILM}

where the latter represents the distance between the top of the OCTA image
and the detected ILM, see Figure 4. Then the flattened image I ′ is defined by:

I ′(x, y, z) = I(x, y, z − fI(x, y) + b) (1)
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a.

b.

c.
1. 2. 3.

Fig. 4. Flattening transformation. x/z slice of OCT (a.1.) and OCTA (b.1.) with
the detected ILM (blue) and ONL (Outer Nuclear Layer, green). 3D OCTA: original
(a.2.) and flattened (a.3.). Row b.2./3.: x/y slice corresponding to the red line in row
c.2./3.. Row c.2./3.: x/z slice corresponding the red line in the row b.2./3..

where b > 0 is an offset. The offset leads to a shift so that we still have a part of
the vitreous body above the retina new image, see Figure 4. This transformation
implies that the ILM in the flattened image is a plane fI′(x, y) = b = const.
After the transformation, the vascular network in I ′ evolves parallel to the x/y
plane, see 4. The related inverse transformation of (1) is given by:

V (x, y, z) = V ′(x, y, z − b+ f(x, y))

In addition, the flattening transformation considerably simplifies and acceler-
ates the data labeling by a big margin. Without this, the annotator has to label
on slices similar to the one in Figure 4.b.2, where the vessels dip in and out of the
slices and often the decision if a voxel belongs to the vascular network depends
on the slices above or below. With the flattening transformation, instead, the
annotator can work on images similar to the one in Figure 4.b.3, which allows
much faster decisions and labeling of bigger areas at once.

4 OCTA dataset MORE3D with 3D labeled vessel
network

Our dataset consists of 21 OCT and OCTA 3D volumes that were provided by the
Department of Ophthalmology, St. Franziskus Hospital, Münster. It will be made
available at: https://www.uni-muenster.de/PRIA/forschung/more3d.html. All
the OCTA scans were captured with the AvantiTM from Optovue and have a
resolution of nearly isotropic 304×304 voxels in the x/y axis and 640 for OCT
respectively 160 for OCTA in the z-axis. Hence 4 voxels in the z-axis in OCT
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Fig. 5. Illustration of OCTA images (in x/y plane with 1 voxel thickness in z-direction)
and their annotations. From left to right: OCTA, enlarged section of the OCTA,

Ground Truth, enlarged section of the Ground Truth.

correspond to 1 voxel in OCTA. Since the OCTA images are derived from the
OCT image, they are naturally aligned. We found that the vessels are stretched
in the z-direction (see [17] for further information). With the definition of the
Signal-to-Noise Ratio as SNR = 10 · log10(

µ
σ ), where µ is the average signal value

and σ is the standard deviation, our dataset after normalization to [0, 1] has
an SNROCTA = −1.12. This is substantially lower than the popular 2D DRIVE
fundus retinal image data set [40] with SNRDrive = 8.07, thus indicating the
much higher complexity of the OCTA segmentation task at hand.

We segmented the ILM and the ONL, whereby the ONL was refined by hand
afterwards due to higher difficulty. The Region of Interest (ROI) was set as
all voxels in between the detected ILM and ONL. The resulting ROIs contain
between about 1.2 – 1.6 millions voxels depending on the physiology of the eye.
This corresponds to an average ROI thickness of 13–17 voxels or ∼ 0.16–0.22mm.
Each dataset has a labeled vascular network of 42,000–125,000 voxels (average
76,000 voxels), which amounts to 3–10% of the ROI. The average cross-section
area for the vessels is 13.86px±8.73px, which equals around 4px±2px as average
vessel diameter.

The superficial and deep vascular network was first hand labeled by the
first author (9 datasets) or a student assistant (12 datasets). Afterwards it was
corrected by a medical expert. These double graded segmentations are taken as
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ground truth (GT). The time needed to label one dataset was about 8–12 hours
plus 1–3 hours for the corrections by the medical expert. As one can see in Figure
5, the dataset provides various challenges, very bright vessels, bright background
noise to very low intensity and small vessels next to noisy background. The hand
labeling was performed on the flattened OCTA images in the x/y plane. The
proposed flattening transformation considerably increased the labeling speed and
reduced the difficulty to recognize the vessels. The average gradient/slope of the
ILM is 5.9%± 3.9% with a median of 5.1%. Thus, the flattening transformation
will not disrupt the original structure.

The only needed parameter for the flattening transformation is the ILM.
Since this transformation is a voxel-wise shift by the position of the ILM, small
mistakes in the ILM result in small errors in the transformation, as long as the
segmented ILM stays smooth. Furthermore, the ILM is easily detectable in the
OCT image so that a smooth ILM for the OCTA image is given due to the lower
resolution in the z-axis.

5 3D vascular network segmentation

5.1 Vesselness measures

A common approach to segmenting vessels is the use of vesselness measures.
We consider 12 vesselness measures, which can be divided into three groups:
Multiscale filter based (Ricci [34], Chaudhuri [4], Läthèn [29], Azzopardi [2]),
morphological operation (Zana [45], Sazak [37]), and multiscale eigenvalue based
(Jerman [15], Frangi[11], Sato[36], Li [23], Erdt [9], Zhou[47]). A selection of such
measures will be integrated into the segmentation network.

5.2 Hybrid U-net architecture

The decision if a voxel belongs to the background or to a vessel is of local nature.
Thus, we choose a patch-based CNN approach to reduce the computational cost
and increase the speed. We choose an input patch size as 28×28×5 and our
output patch size 16×16×1 in x/y/z due to the following reasons. We added 6
voxels in both x and y direction for the input patch so that for each voxel in the
output patch we know at least the 13×13 local surrounding in the x/y plane.
During labeling it was observed that most voxels could be labeled by viewing
the current slice in the x/y plane and for the challenging voxels it was enough
to scroll through 1-2 extra slices in the z-direction to decide between vessel and
background. Thus, we chose the z-size of the input patch as 5 so that we include 2
slices above and 2 below the output patch location. To reduce imbalance between
foreground and background voxels we only learn with patches whose 16×16×1
GT contains at least 1 foreground voxel.

In this work we focus on integrating vesselness measures and different data
sources for boosting segmentation performance. We will study which vesselness
measures are the best to be used (see Section 6) and at which position of the hy-
brid U-net we should insert vesselness measures to perform best. Neural networks
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Fig. 6. Hybrid U-net with 3 options to insert vesselness measures: At the front (1), in
the middle (2), and at the end (3). The input is 3D of size 28×28× (5 · (N +1)), where
N is the number of vesselness measures used as input. After the first 3D convolution
we continue with a 2D U-net, starting with 64 channels, double the channels with
every max pooling layer, and then reduce to half of the number of channels with every
up-sampling. The voxel-wise weighted loss is not shown here.

like U-net certainly have some capacity of learning the vesselness. But providing
such information explicitly may simplify the network learning. Note that there
are other ways of utilizing vesselness measures. For instance, the Frangi-net [12]
reformulates the 2D Frangi vesselness measure into a pre-weighted neural net-
work, which leads to a network that is equivalent to the multi-scale Frangi filter.
Insertion position of vesselness measures. There are potentially 3 positions
to insert N vesselness measures into the U-net (see Figure 6; we do not consider
multiple insertion positions necessary): a) Front: We concatenate the vesselness
measures directly to the OCTA, resulting in an increased input patch size 28×
28×(5 · (N +1)). b) Middle: We insert the vesselness measures directly after the
upwards path of the U-net, but before the next convolutional layer. The size of
the enhanced image patches will be cropped to 16×16×(5 ·N). c) End: We insert
the vesselness measures after the last 3x3 convolution layer but before the final
1x1 convolutional layer with the Sigmoid layer. The size of the enhanced image
patches will be cropped to 16×16×(5 · N). We empirically study which one is
most beneficial.
Voxel-wise weighted loss using GT labels. To cope with the imbalance
between foreground and background and the fact that smaller vessel are signifi-
cantly harder to segment we will adjust the voxel-wise weight in the loss function.
Two approaches will be studied.

The first approach is vessel diameter based. From the labeled GT we can
calculate a vessel diameter for each foreground voxel. We propose a weighting
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function f for a given voxel x and a diameter function d(x) as:

wdiam(x, α, n) =

{
1, if x is in background

α
(

dmax
d(x)

)n

, otherwise

where dmax is the maximum expected vessel diameter and α is a tuneable pa-
rameter to increase or decrease the influence of the weights. For α = 1 and n = 0
we will receive a uniform response. A higher α increases the focus on the fore-
ground to cope with the imbalance. The higher we choose n > 0, the more we
will emphasize the difficult smaller vessels in comparison to the wider vessels.

The second approach is edge-based. We use the GT to find all foreground
voxels F whose 26-neighborhood contains at least one background voxel and all
background voxels B whose 26-neighborhood contains at least one foreground
voxel. Then

wedge(x, α) =

{
α, x ∈ F or x ∈ B

1, otherwise

We will compare the proposed voxel-wise weighted losses with three other
losses that address the imbalance problem: (1) The Dice loss, (2) the weighted
loss, where each class is weighted by 1

classsize , and (3) the focal loss [25].

5.3 Flattening-based data augmentation

3D pixel-to-pixel labels are labor-intensive and difficult to obtain [24]. Thus,
we use data augmentation to make maximum use of our 21 hand labeled 3D
volumes. We flip the volume along x/z plane and rotate it around the z axis in
90◦ steps, increasing the amount of volumes by the factor 8. All other rotations or
flips are not used since they might create vascular networks that are not feasible
in the human eye. To generate sufficient feasible augmented date, we proceed as
follows: a) Flatten the OCTA volume with the flattening transformation (1); b)
Tilt the OCTA volume by adding a gradient in the x and y axis. By using the
flattening transformation and restricting the norm of the gradient in the second
step we make sure that we do not tear up the vascular network and still have a
feasible representation of the retina. With this technique we are able to further
increase amount of augmentation by the factor 25.

6 Experimental results

6.1 Evaluation metrics

Voxel-based evaluation metrics. We use the following popular methods de-
rived from TP, FP, TN, FN, TPR, TNR, FPR and PPV of the confusion matrix:

• F1-score (same as Dice): F1 = 2(PPV × TPR)/(PPV + TPR)
• Area Under ROC Curve (AUC)
• Accuracy: Acc = (TP + TN)/(TP + TN + FP + FN)
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• Kappa score: (Acc−pe)/(1−pe) with pe =
(TP+FN)(TP+FP )+(TN+FP )(TN+FN)

(TP+TN+FP+FN)2

• False Discovery Rate: FDR = FP/(FP + TP )
• G-mean score:

√
Sensitivity × Specificity

Due to the imbalance between foreground and background some evaluation met-
rics deliver very high values, e.g. AUC and Accuracy [5].
Skeleton-based evaluation metrics. We also use the skeleton similarity met-
rics [44] to compare the skeleton of the vessel network. For each segment i, a
curve similarity csi and a thickness similarity tsi are computed segment-wise
between the GT and the segmentation. The skeleton similarity for one segment
is then given by: ssi = α · csi + (1 − α) · tsi where α ∈ [0, 1] is tuneable pa-
rameter to weight csi and tsi. The overall skeleton similarity SS is computed by
summing up the individual ssi weighted with the corresponding segment length.
Based on SS, weighted TP and FN are computed, while FP and TN are de-
fined as usual. Finally, the skeleton-based sensitivity (rSe), specificity (rSp), and
accuracy (rAcc) are derived (see [44] for more details).

6.2 Vesselness measures on OCTA images

We normalized the voxel values to [0, 1] and due to the high noise level in 3D
OCTA images we applied a mean filter smoothing. We tested different sizes and
found that a filter of size 3×3×3 is well suited. The results of vesselness measures
are presented in Table 2. We calculated the result for 4 different combinations:
2D methods on original image, 2D methods on flattened images, 3D methods
on original image, and 3D methods on flattened images. We present the average
F1-scores on 21 volumes of our OCTA dataset with 3D labeled vessel network for
12 vesselness measures. Other performance measures provided similar results.

The best performing methods are the morphological operations proposed
by Zana [45]. In 2D with our flattening technique it outperforms methods and
combinations which are not based on morphological operation by 3.9% points
with an F1-score of 0.7721. Furthermore, the AUC values for the measure by
Zana are the best for every tested combinations. Overall, we selected one best
performing method from each category for further use: Ricci [34], Zana [45],
Frangi [11], all 2D flattened.

6.3 3D vessel segmentation in OCTA images

We performed a 3-fold cross validation. The optimal threshold to binarize the
neural network output is determined on the training data based on F1-score
and then applied to the validation data. With data augmentation as described
above we have a total amount of 14×8×25 = 2800 training volumes for each
cross validation step. Each volume contains ∼2500-3000 patches with at least
one foreground voxel. We used the Adam optimizer for training.
Insertion position of vesselness measures. Table 3 indicates that an inser-
tion at the front performs best in terms of all voxel-based metrics. The middle
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Category Method 2D flattened 2D 3D flattened 3D

1)
Ricci 0.7390 0.7438 0.5643 0.5601
Chaudhuri 0.6909 0.6942 0.6455 0.6514
Läthèn 0.6840 0.6709 0.6788 0.6902
Azzopardi 0.6686 0.6309 ∗ ∗

2) Zana 0.7594 0.7721 0.7184 0.7134
Sazak 0.7371 0.7131 0.7000 0.7018

3)

Jerman 0.6626 0.6557 0.6932 0.6886
Frangi 0.7042 0.7123 0.6931 0.6939
Sato 0.6864 0.6673 0.5778 0.5809
Li 0.6173 0.5995 0.6462 0.6483
Erdt 0.6864 0.6673 0.6963 0.6972
Zhou 0.6849 0.6705 0.6602 0.6643

Table 2. Study of vesselness measures: F1-scores on 21 images for vesselness measures.
Method category: 1) multiscale filter based, 2) morphological operation, 3) multiscale
eigenvalue based. *3D implementation not available.

measure position F1-score AUC Acc G-mean Kappa FDR rSe rSp rAcc

front 0.8547 0.9933 0.9836 0.9149 0.8460 0.1315 0.8152 0.9833 0.9185
middle 0.8389 0.9906 0.9822 0.9001 0.8292 0.1352 0.8361 0.9788 0.9258
end 0.8444 0.9917 0.9823 0.9104 0.8350 0.1453 0.7960 0.9818 0.9115

Table 3. Insertion position of vesselness measures in hybrid U-net with all inputs.

position even reduced the performance in most vovel-based metrics compared to
the vanilla U-net without added vesselness measures (compare Table 4). In con-
trast, rSe and rAcc increase. At first glance this is counter-intuitive. However,
a look at the results reveals an over-segmentation (i.e. extracting more vessel
segments), thus affecting negatively the voxel-based metrics but positively the
skeleton-based metrics. We will use the front insertion option in the following.
Segmentation performance by combination of input sources. Table
4 shows the results. The use of vesselness measures consistently increases all
metrics. Adding one measure, e.g. Ricci [34], increases the performance for all
voxel-based measures. The skeleton-based rSe and rAcc receive best values when
adding Zana [45] whereas rSp is best using Ricci [34]. Using all input sources
(OCTA, OCT and all three vesselness measures) tops all voxel-based metrics
and is close to the best performance in the skeleton-based metrics. Thus, we will
only consider this all-input combination for the following experiments.
Voxel-wise weighted loss. After analyzing the labeled data we set the maxi-
mum expected diameter to dmax = 7. A pixel-wise weighted loss with wedge(x, 10)
(compare Table 5) increased the performance in every voxel-based metric except
G-mean. It achieved the overall best skeleton-based rSp=0.9844.

Figure 7 shows an example using the weighted loss wdiam(x, 2, 2). It outper-
forms all other presented methods and combinations in skeleton-based rSe and
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CNN input F1-score AUC Acc G-mean Kappa FDR rSe rSp rAcc

OCTA 0.8428 0.9923 0.9824 0.9064 0.8335 0.1400 0.8160 0.9799 0.9172
OCTA+OCT 0.8434 0.9920 0.9823 0.9079 0.8340 0.1410 0.8156 0.9806 0.9167
OCTA+Ricci [34] 0.8502 0.9928 0.9832 0.9111 0.8413 0.1334 0.8051 0.9839 0.9159
OCTA+Zana [45] 0.8476 0.9928 0.9829 0.9078 0.8385 0.1326 0.8252 0.9801 0.9206
OCTA+Frangi [11] 0.8436 0.9923 0.9826 0.9056 0.8343 0.1368 0.8082 0.9805 0.9146
all combined 0.8547 0.9933 0.9836 0.9149 0.8460 0.1315 0.8152 0.9833 0.9185

Table 4. Segmentation performance by combination of input sources.

loss weighting F1-score AUC Acc G-mean Kappa FDR rSe rSp rAcc

uniform 0.8547 0.9933 0.9836 0.9149 0.8460 0.1315 0.8152 0.9833 0.9185
wdiam(x, 2, 2) 0.8436 0.9930 0.9822 0.9133 0.8342 0.1530 0.8667 0.9701 0.9306
wedge(x, 10) 0.8574 0.9938 0.9838 0.9175 0.8488 0.1316 0.8144 0.9844 0.9203
wedge(x, 20) 0.8514 0.9933 0.9827 0.9263 0.8422 0.1616 0.8461 0.9767 0.9268

Weighted classes 0.8327 0.9912 0.9812 0.8985 0.8228 0.1445 0.8163 0.9746 0.9153
Dice loss 0.8559 (0.9456)† 0.9836 0.9191 0.8472 0.1375 0.8045 0.9819 0.9169
Focal loss [25] 0.8485 0.9931 0.9828 0.9104 0.8394 0.1357 0.8296 0.9821 0.9245

Table 5. Voxel-wise weighted loss using all inputs. † The result was close to binarized,
leading to a low sampling rate for the AUC, which causes a low AUC.

rAcc, but has one of the highest false detection rates. Visually, this setup tends
to overestimate the vessel diameter in the z-axis and underestimates the diame-
ter in the x/y plane. This is also indicated by the higher amount of small voxel
groups in in Figure 7 (upper row, right image) . These groups belong to vessels
whose diameter in the z-axis was overestimated. This explains the lower values in
the voxel-based metrics. The use of the proposed voxel-wise weighted losses was
able to outperform the three compared losses addressing the imbalance problem.

7 Conclusion

In this work we presented several contributions to 3D retinal vessel segmen-
tation in OCTA volumes. The proposed flattening transformation considerably
accelerates the 3D data labeling and enables a specialized data augmentation.
As another advantage it may simplify the training of neural networks that are
not rotation-invariant, thus potentially making them more difficult to work on
the raw curved images. On the other hand, the influence of the flattening trans-
formation on the subsequent analysis is not consistent. Figure 2 reveals that
dependent of the operator, the unflattened version may be favorable. We have
presented the first OCTA dataset MORE3D with 3D labeled vessel network. It
will foster the research in the community. A hybrid U-net was realized to achieve
a first reference segmentation performance on our dataset. The presented work
helps resolve the problem of the dependence on an appropriate pre-segmentation
for 2D enface images that are the dominating source of data in the literature.
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Fig. 7. Illustration of results on a flattened slice. From left to right: OCTA, GT, U-net
with OCTA as input, hybrid U-net with all-input combination and voxel-wise weighted
loss wdiam(x, 2, 2).

In future we will examine adapting alternate backbone network architectures
to full 3D vessel segmentation. Moreover, we will explore transfer learning to
efficiently and effectively process OCTA volumes from other manufacturers using
the outcome of this work. A fundamental issue is the fact that the absolute values
of metrics have different significance for 2D and 3D images (see Section 2). It
is thus helpful to find a way that enables to compare the results of 2D and 3D
vessel detection problem instances.

Appendix

If we overestimate the diameter r of the vessel by p percent (see Figure 3), then
the True Positive Rate will become:

TPR2D(p) =
2r

2r + 2pr
=

1

1 + p

TPR3D(p) =
πr2

πr2 + (π(r + pr)2 − πr2)
=

1

(1 + p)2

Similarly if we underestimate the vessel diameter by p percent we have Positive
Predictive Value:

PPV2D(p) =
2(r − pr)

2(r − pr) + 2pr
= 1− p

PPV3D(p) =
π(r − pr)2

π(r − pr)2 + (πr2 − π(r − pr)2)
= (1− p)2

These results can be used to compare the inherent complexity of vessel detection
in 2D vs. 3D (see Section 2).
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