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Abstract. Medical image segmentation is a crucial task that relies on
the ability to accurately identify and isolate regions of interest in medical
images. Thereby, generative approaches allow to capture the statistical
properties of segmentation masks that are dependent on the respective
structures. In this work we propose a conditional score-based generative
modeling framework to represent the signed distance function (SDF)
leading to an implicit distribution of segmentation masks. The advan-
tage of leveraging the SDF is a more natural distortion when compared
to that of binary masks. By learning the score function of the conditional
distribution of SDFs we can accurately sample from the distribution of
segmentation masks, allowing for the evaluation of statistical quantities.
Thus, this probabilistic representation allows for the generation of uncer-
tainty maps represented by the variance, which can aid in further analysis
and enhance the predictive robustness. We qualitatively and quantita-
tively illustrate competitive performance of the proposed method on a
public nuclei and gland segmentation data set, highlighting its potential
utility in medical image segmentation applications.

Keywords: Score-based generative models · image segmentation · con-
ditional diffusion models · signed distance function.

1 Introduction

Medical image segmentation approaches are often trained end-to-end in a dis-
criminative manner using deep neural networks [18, 3, 29]. However, also genera-
tive models have emerged for image segmentation with the advantage of learning
the underlying statistics of segmentation masks conditioned on input images [9,
34, 1]. Apart from generative adversarial networks (GANs), promising candi-
dates in this field are score-based generative models [6, 23, 26], which learn the
score of a data distribution to sample from the distribution in the framework of
a stochastic differential equation (SDE). Herein, noise is gradually injected to
smooth the data distribution until it resembles a simple, tractable prior distri-
bution – a process which can be reversed with the corresponding time-reverse
SDE relying on the learned score function.
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m̃(0) dm̃ =
√
d[σ2(t)]

dt dw m̃(T) condition x

m̃(0) dm̃ = [− d[σ2(t)]
dt ∇m̃ log pt(m̃|x)]dt +

√
d[σ2(t)]

dt dw̄ m̃(T)

Fig. 1. Schematic of the corruption process (top row from left to right for different
t ∈ [0, T ]) on an SDF segmentation mask m̃ for a given image x. The forward and
reverse processes are governed by the variance-exploding SDE and its time-reverse
SDE, respectively, where the latter uses the conditioned score of the distribution of
SDF masks m̃ given images x. The corresponding thresholded segmentation masks m
are shown in the second row.

Diffusion models can be naturally incorporated to solving inverse problems in
medical imaging [25], but they can also be extended to learn a conditional distri-
bution, which makes them well suited for image segmentation. Their potential
applicability has already been shown in works [31, 1, 30] using conditional de-
noising diffusion probabilistic modeling (DDPM). A significant drawback when
directly injecting noise on segmentation masks is given by the fact that the dis-
tortion process is unnatural with respect to the underlying distribution. One
could argue that the statistics of segmentation masks, which are bimodal or
contain very few modes depending on the number semantic classes, are not easy
to learn as there is no transition between class modes. A remedy is provided
by recalling the SDF, a classic image segmentation technique [16], which has
also regained attention within newer works on discriminative image segmenta-
tion using convolutional neural networks (CNNs) [15, 33, 4]. It is based on the
idea that an implicit segmentation map is computed using the SDF for which
at any given point in the resulting segmentation map the orthogonal distance
to the closest boundary point is computed. Additionally, the distance is denoted
with a negative sign for interior regions and a positive sign for the background
regions. Thus, the SDF acts as a shape prior in some sense and it represents a
smoother distribution of segmentation masks and thus a smooth transition in
class modes. Moreover, it naturally promotes smoothness within the transformed
binary segmentation map – which in return is obtained by thresholding the SDF
map at the object boundaries.

In this work, we propose to fuse medical image segmentation using score-
based generative modeling based on SDEs with a segmentation approach relying
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on the Euclidian SDF - thereby learning a smooth implicit representation of
segmentation masks conditioned on the respective image. The noise-injecting
data perturbation process in diffusion models thereby blends in canonically by
gradually smoothing the distribution of the SDF mask. Since binary masks only
provide a discrete representation of the object region, the score function can be
highly sensitive to small changes in the binary mask, leading to segmentation
errors and inconsistencies. On the other hand, the SDF provides a smooth and
continuous representation of the object boundary, which can be more natural
and better suited to model the shape and boundaries of objects in the image.

With this approach, the object boundaries are obtained from the sampling
process, which can then be used to threshold for the binary segmentation masks,
implying that the segmented objects will be smooth. Moreover, the segmenta-
tion uncertainty can be quantified by acquiring multiple segmentations given
an input image due to its generative nature, thus further enhancing the robust-
ness and interpretability of the approach and providing valuable insight into the
segmentation process.

2 Method

2.1 Image Segmentation using SDFs

Image segmentation is the task of finding a segmentation mask m ∈ M that
assigns each pixel in an image x ∈ X a class, where X := RM×N and M :=
RM×N . Using SDFs the segmentation problem can be rephrased in the context
of (signed) distances with respect to the object boundaries, where we consider
each pixel mij of the domain Ω = {1, . . . ,M}×{1, . . . , N} with the object S to be
segmented. The SDF map then contains for each mij the distance to the closest
boundary pixel ∂S, where a negative/positive sign denotes the interior/outside
of the object, respectively.

Mathematically, the SDF m̃ of a segmentation mask m can thus be computed
using the Euclidian distance function for each pixel mij , which additionally can
be truncated at a threshold δ to consider only a span of pixels around the object
boundary ∂S. Moreover, the truncation helps to remain agnostic with respect
to higher positive distances belonging to the background, as they should not
impact the resulting segmentation. The implicit, truncated SDF ϕ(mij) is then
obtained as follows (also see [16]):

ϕ(mij) =





−min{miny∈∂S ∥y −mij∥2, δ} if mij ∈ S,
min{miny∈∂S ∥y −mij∥2, δ} if mij ∈ Ω \ S,
0 if mij ∈ ∂S.

(1)

Thus we can obtain the full segmentation map m̃ = ϕ(mij)i=1,...,M
j=1,...,N

by applying

ϕ(·) on the entire segmentation mask m, which is also depicted in Figure 2.
Conversely, given m̃ one can easily retrieve the binary segmentation map m by
thresholding at 0 to separate segmented objects from background.
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∂S

Fig. 2. Given an image x (left), its binary segmentation mask (center) can be trans-
formed into a truncated, normalized SDF mask (right). The zoomed area shows some
segmentation objects in detail denoted by S and their boundaries ∂S embedded in the
domain Ω.

2.2 Conditional Score-Based Segmentation

In generative approaches for image segmentation the goal is to sample from the
conditional distribution p(m̃|x) to obtain a segmentation mask m̃ given an input
image x. We frame this task in the setting of SDEs, which gradually corrupt data
samples from the data distribution m̃(0) ∼ p0 until a tractable prior distribution
pT is reached. There exists a corresponding time-reverse SDE which can then
be leveraged to transform the prior distribution back to the data distribution by
using the score of the conditional data distribution at time t, i.e. ∇m̃ log pt(m̃|x).
This score function can be learned using a training set of S paired data samples
of images and SDF segmentation masks D = {(m̃s, xs)}Ss=1.

In general, SDEs have a drift term and a diffusion coefficient that govern its
forward and corresponding reverse evolution. Hereby, we solely focus on so-called
variance-exploding SDEs, as presented in [26], although our approach should
hold also for variance-preserving SDEs. Thus, for a time process with t ∈ [0, T ],
a sequence {m̃(t)}Tt=0 is generated by means of additive corruptive Gaussian
noise with standard deviation σ(t). Using Brownian motion w to denote the
noise corruption, the corresponding SDE then reads as

dm̃ =

√
d[σ2(t)]

dt
dw. (2)

The SDE in (2) can be reversed [2], which requires – when conditioning on images
x – the score of the conditional distribution ∇m̃ log pt(m̃|x). Both the forward
and the reverse process are illustratively demonstrated in Figure 1, where the
resulting thresholded segmentation masks also show the effect of the corruption
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process on the explicit binary segmentation mask (which is obtained by thresh-
olding the SDF segmentation mask). The reverse SDE for w̄, since time is now
going backwards such that t ∈ [T, 0], essentially reads as

dm̃ =
[
− d[σ2(t)]

dt
∇m̃ log pt(m̃|x)

]
dt+

√
d[σ2(t)]

dt
dw̄. (3)

The scores of the conditional distribution ∇m̃ log pt(m̃|x) can be estimated
using either techniques from score matching [8, 23, 24] or from implicit score esti-
mation such as DDPM [21, 6]. Here, we choose to learn a noise-conditional score
network sθ∗(m̃(t), x, σ(t)) for the reverse-time SDE following the continuous for-
mulation of denoising score matching with t ∈ U(0, T ) for noise levels from σmin
to σmax [26]. Thereby, using Tweedie’s formula [5] we minimize the following
objective:

θ∗ = argmin
θ

Et

{
σ2(t)Em̃(0)Em̃(t)|m̃(0)

[
∥sθ(m̃(t), x, σ(t))−∇m̃ log p0t(m̃(t)|m̃(0))∥22

]}
.

(4)
The perturbation kernel p0t(m̃(t)|m̃(0)) has the form of a standard normal dis-
tribution using σ(t) = σmin(

σmax

σmin
)t.

Once the learned scores sθ∗ are available, they can be used to sample from the
conditional distribution, where there exist several numerical solvers based on the
time-reverse SDE. Here, we employ a predictor-corrector sampler as proposed
by [26], which alternates between time-reverse SDE steps (the predictor) and
Langevin Markov chain Monte Carlo (MCMC) sampling steps (the corrector),
see Algorithm 1.

Algorithm 1: Predictor-corrector algorithm to sample from p(m̃|x).
1 Choose conditioning image x, set number of iterations K,J , set r ∈ R+

2 m̃K ∼ N (0, σ2
maxI)

3 for k = K − 1, . . . , 0 do
4 z ∼ N (0, I);

5 m̃k = m̃k+1 + (σ2
k+1 − σ2

k)sθ∗(m̃k+1, x, σk+1) +
√

σ2
k+1 − σ2

kz;

6 for j = 1, . . . , J do
7 z ∼ N (0, I);
8 g = sθ∗(m̃

j−1
k , x, σk) ;

9 ε = 2(r∥z∥2/∥g∥2)2 ;
10 m̃j

k = m̃j−1
k + εg +

√
2εz ;

11 end
12 m̃k = m̃J

k ;
13 end
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Fig. 3. Comparison of the effect of the corruption process on the resulting thresholded
segmentation masks when using an SDF mask m̃ and a binary mask m for a given image
x. Note that the SDF representation allows for a more natural distortion process in
its thresholded masks, which evolves along the object boundaries instead of directly
introducing “hole”-like structures at random pixel positions as it is the case in the
thresholded masks when directly using the binary segmentation mask.

2.3 Motivation of the SDF in Conditional Score-Based
Segmentation

The motivation of using the SDF in conditional score-based segmentation is due
to the nature of the perturbation process in standard diffusion models, which
consists of gradually adding noise to the sought segmentation mask in its SDF
representation such that its distribution gets smoothed. The destructive process
thus implicitly incorporates the boundary information of the segmented objects.

In contrast, if the binary masks are used directly in the perturbation pro-
cess, the corruption yields “hole”-like structures in the resulting thresholded seg-
mentation masks and there is no possibility to integrate the structure of the
segmentation objects within the forward process. A comparison of effect of the
destructive process on both variants of segmentation mask representations for
varied time steps is shown in Figure 3.

3 Experiments

3.1 Data Sets

For the experimental setting, we utilize two publicly available data sets. The
first data set is MoNuSeg [12], which consists of 30 training images and 14 test
images. Each image is of size 1000 × 1000 and overall they contain more than
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21,000 annotated nuclei in Haematoxylin and Eosin (H&E) stained microscopic
images. For data preprocessing we resort to a structure-preserving color normal-
ization [27] as the different organ sites yield considerable intensity variations in
the data. This is followed by a gray scale conversion and all images are subse-
quently resized to 500 × 500. During training, overlapping crops of 128 × 128
were used with random horizontal and vertical flips for data augmentation.

As a second medical data set, the Gland Segmentation (GlaS) data set [20]
was used. It consists of 85 training and 80 test H&E stained microscopic im-
ages with annotated glands from colorectal cancer tissue. Again, a structure-
preserving color normalization [27] is used also here for data preprocessing, which
is followed by resizing all training and test images to 128× 128 inspired by [28].
Data augmentation in training is done as with the MoNuSeg data set.

3.2 Architecture & Training

The architecture to learn the noise-conditional score function is adapted from [6,
26]. Further, a conditioning on the image x is required, for which we roughly
follow recent works related to conditional generative modeling by concatenating
the encoded conditioning image to the network input [17, 7, 19].

For the diffusion parameters we set σmax = 5 and σmin = 1e−3. Note that
the latter is slightly lower than usually proposed in literature, which is due to
the SDF data distribution, as denoising score matching requires a perturbation
kernel at the lowest noise scale such that the input distribution remains more or
less unchanged. For the learning setting we employ Adam’s optimizer [11] with
default coefficient values and a learning rate of 1e−4.

3.3 Sampling

To obtain segmentation masks for test images x, we use the predictor-corrector
sampler in Algorithm 1. The test images of the MoNuSeg data set are each
divided into four evenly sized patches per image, whereas for the GlaS data
set the entire test images are processed. In all sampling experiments we set
r = 0.35/0.15 for the corrector step size scaling for the MoNuSeg and GlaS data
set, respectively, as we empirically found this to work best in terms of evaluation
metrics. Moreover, we use K = 500/200 predictor steps and J = 2/1 corrector
steps for both data sets, respectively, as this setting revealed to yield best results,
despite general low numeric fluctuations amongst different settings.

3.4 Evaluation

The resulting samples are SDF predictions which have yet to be converted to
valid segmentation maps. Thus, they have to be thresholded at 0 which represents
object boundaries to separate segmented objects (which have 0 at the boundary
and negative distances inside assigned) and background (consisting of positive
distances). However, due to the employed approach of denoising score matching
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we set the threshold to 3σmin, since we have to assume that there is still remaining
noise present at the scale of the smallest noise level. This is crucial to consider
since we are interested in the exact boundary.

By leveraging the generative nature of our approach, we are further inves-
tigating the effect of averaging over 128 sampling runs. Thereby we obtain the
minimum mean square error (MMSE) which gives a more robust prediction,
which is shown in increased quantitative scores.

The obtained segmentation masks are then evaluated using the standard
metrics F1 score and Intersection over Union (IoU). We compare our method
to commonly referred benchmark models, ensuring that both U-Net variants
and attention/transformer mechanisms are considered. Moreover, we also con-
sider [30] to obtain a comparison with a generative, conditional DDPM that
predicts standard binary segmentation masks in the sampling process. The ap-
proach in [30] can also be viewed in the form of an SDE and its time-reverse
SDE using a variance-preserving scheme.

3.5 Results

Table 1 shows quantitative results for both data sets with our method and com-
parison methods. To enable a fair comparison the benchmark results were taken
from [28] where possible. The results indicate that our method outperforms the
comparison methods on the GlaS data set, but also for the MoNuSeg data set
competitive results can be obtained, although slightly worse than some of the
comparison methods. For both data sets, using the MMSE by averaging over
multiple sampling runs clearly gives a significant boost in quantitative perfor-
mance. In comparison, the DDPM delivers slightly worse results, but we want
to emphasize that they could also be increased by computing the MMSE over
several runs before thresholding as it is a generative model – this was also shown
in [30] where segmentation ensembles are computed to improve the results.

Table 1. Quantitative segmentation results on the MoNuSeg and GlaS data set.

MoNuSeg GlaS
```````````Method

Metric F1 ↑ mIoU ↑ F1 ↑ mIoU ↑

FCN [3] 28.84 28.71 66.61 50.84
U-Net [18] 79.43 65.99 77.78 65.34
U-Net++ [35] 79.49 66.04 78.03 65.55
Res-UNet [32] 79.49 66.07 78.83 65.95
Axial Attention U-Net [29] 76.83 62.49 76.26 63.03
MedT [28] 79.55 66.17 81.02 69.61
DDPM [30] 76.03 61.42 76.81 64.15
Ours 78.13 64.19 82.03 71.36
Ours – MMSE 78.64 64.87 82.77 72.07
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Figure 4 shows exemplary qualitative results for both data sets to further
highlight the potential applicability of our proposed method. Note that although
the evaluation metrics for our approach that can be found in Table 1 are obtained
by evaluating the entire images, we show smaller crops here for the sake of a more
detailed visual inspection of the segmented objects. One can clearly observe the
smooth segmented objects m obtained from thresholding the SDF predictions
m̃(0), which are in good agreement with the groundtruth segmentation masks
mgt for both data set samples.

condition x predicted m̃(0) x⊗m thresholded m ground truth mgt

M
oN

u
S
eg

G
la
S

Fig. 4. Exemplary sampled segmentation masks for both data sets. The predicted SDF
masks m̃(0) are directly obtained from the sampling procedure, whereas the thresholded
masks m are shown to additionally enable a visual comparison with the depicted ground
truth mgt. Furthermore, we provide the condition image with the overlaid thresholded
mask x⊗m.

A visual comparison is additionally depicted in Figure 5, where we compare
the thresholded segmentation prediction of our model of a MoNuSeg test im-
age with its DDPM-based (generative) counterpart [30] and two discriminative
models, namely U-Net++ [35] and MedT [28]. As can be seen in the provided
zoom, the SDF representation of segmentation objects indeed seems to act as
a shape prior and thus yields smoother segmentation objects while avoiding
artefacts such as single pixels/small structures that are mistakenly classified as
foreground objects.

3.6 Segmentation Uncertainty

Since the presented approach is based on a generative scheme, we can sam-
ple from the conditional distribution of the SDF given the conditioning image
p(m̃|x). An advantage of this approach is given by the fact that the resulting
statistical values allow for the quantification of segmentation uncertainties in
the SDF predictions as well as the thresholded masks, which provide additional
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Fig. 5. Qualitative results for a test input image x for discriminative approaches resp.
condition image x for the generative approaches. We compare our model with the gen-
erative DDPM [30] and two discriminative models, U-Net++ [35] and MedT [28]. Using
the SDF in our conditional score-based segmentation approach shows that a shape prior
is learned, thus preventing small pixel-wise artefacts in the resulting predictions and
yielding smooth segmentation objects.

insights into the segmentation process that are not available with traditional
discriminative approaches. An illustration of the aforementioned property on a
MoNuSeg data sample can be seen in Figure 6, where the standard deviation
maps associated with the SDF predictions and thresholded masks highlight the
regions of uncertainty.

x ⊗ mgt mean m̃(0) std m̃(0) mean m std m

x ⊗ mgt mean m̃(0) std m̃(0) mean m std mx ⊗ mgt mean m̃(0) std m̃(0) mean m std mx ⊗ mgt mean m̃(0) std m̃(0) mean m std mx ⊗ mgt mean m̃(0) std m̃(0) mean m std mx ⊗ mgt mean m̃(0) std m̃(0) mean m std m

Fig. 6. Segmentation example with according statistical values for the SDF predic-
tions m̃(0) respectively thresholded masks m. Notably, the image includes a region
erroneously segmented as a nuclei, as indicated by the orange arrow. This region is
highlighted in the standard deviation maps, which represent the associated uncertainty
in the segmentation.

In general, we observe that the standard deviation appears high on transi-
tions from nuclei to background as well as in wrongly detected nuclei or over-
segmented parts of nuclei. This encouraging observation leads us to the hypoth-
esis that the uncertainty may be associated directly with segmentation errors
similar to what has been shown in [14], see also Figure 7. Here, a visual compar-
ison of the error and standard deviation (uncertainty) maps indicates that the
latter very likely has high predictive capability. A detailed analysis including the
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mutual information of the two variables, however, is out of scope for this work
and subject to future work.

x ⊗ mgt mean m̃(0) |mean m̃(0)-m̃gt| std m̃(0)

mgt mean m |mean m-mgt| std m
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Fig. 7. Segmentation example with statistical values for the predicted m̃(0) and thresh-
olded masks m, along with the corresponding ground truth images and the absolute
error between the predictions and the ground truth. The visual comparison of error
and standard deviation maps (uncertainty) suggests that the latter has predictive ca-
pability for the error.

3.7 Ablation

As we rely on the standard noise-conditioned score network following [6] for the
proposed method, it is more interesting to investigate the influence of the SDF.
Therefore, we learn the conditional score function such that segmentation masks
m can be sampled given x, where all other settings remain unchanged – including
σmin and σmax. Hereby, we obtain a mean IoU/mean F1 score of 51.72/67.80 on
the MoNuSeg data set, and 61.39/73.97 on the GlaS data set, respectively.

Our approach should work reasonably well with other types of architectures
suitable for learning the score of a data distribution. As the primary objective
of this work was to introduce a novel concept rather than striving to surpass
existing benchmarks, in future work, a more sophisticated network architecture
could be considered to further improve the segmentation accuracy.

4 Discussion and Limitations

Generative approaches usually require an increased network complexity and are
thus computationally more expensive than their discriminative counterparts. We
believe that the advantages of having a generative model outweigh its potential



12 L. Bogensperger et al.

drawbacks due to the possibility to evaluate statistical quantities, such as aver-
aging multiple predictions and the generation of uncertainty maps, which may
give valuable insights and might be crucial especially in medical imaging applica-
tions. While the sampling process itself still requires significantly more time than
executing a single forward pass of a discriminative network, there is a variety of
new methods available to speed up the inference stage of diffusion models [22, 13,
10]. For the sake of simplicity the standard method was chosen, however, there
should be nothing to argue against incorporating a different sampling technique.

The proposed approach outperforms the comparison methods only on one
of the two used data sets. However, also on the MoNuSeg data set competitive
results have been presented that could potentially be improved with a further
optimized network architecture. While a state-of-the art model based on U-Net
or transformer architectures might in some cases outperform our quantitative
results we still want to emphasize that there is no option of obtaining a segmen-
tation uncertainty as in Figures 6 and 7 with such discriminative approaches.
Robustness and reliability should not be traded for minor quantitative incre-
ments and improvements.

Moreover, using SDF maps to represent the segmentation masks bears the ad-
vantage that a shape prior is learned which favors smooth segmentation objects.
The resulting binary segmentation masks thus encompass a different charac-
teristic than when using standard conditional DDPM based approaches [1, 30].
Although the statistics of these underlying segmentation masks are properly
learned, the quantitative results do not reflect those findings in the respective
metrics.

Further, obtaining SDF predictions can generally offer other potential ad-
vantages such as obtaining instance segmentations as a byproduct. By using
the watershed transform, the SDF maps could easily be turned into instance
segmentation maps and the problem of touching instances is circumvented.

5 Conclusion and Outlook

In this work we proposed a generative approach for medical image segmentation
by fusing conditional score-based methods with the concept of representing seg-
mentation maps with the SDF. The potential applicability of the method was
demonstrated qualitatively and quantitatively on two public medical data sets.
The SDF provides a smoother and more continuous representation of object
boundaries compared to binary masks, which makes it a more canonical choice
for accurate and robust segmentation.

Furthermore, by leveraging the generative approach, statistical measures such
as mean and standard deviation can be calculated to quantify the uncertainty
in the segmentation results. This information is especially useful for medical
diagnosis and treatment planning, where it is important to know the level of
confidence in the segmentation results.

As an outlook for future research we will focus on the extension of the ap-
proach to multi-class segmentation by additionally incorporating the exclusivity
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of semantic classes per pixel into the predicted SDF maps. Additionally, fuelled
by preliminary experimental successes, the possibility of learning the score of the
joint distribution of images x and segmentation masks m̃ will be explored. This
would provide a powerful framework, where one could directly sample paired
training data (m̃s, xs) from the joint distribution or condition on either one of
them to sample from the conditional distributions p(m̃|x) or p(x|m̃).
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