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Abstract. Online Self-Supervised Learning tackles the problem of learn-
ing Self-Supervised representations from a stream of data in an online
fashion. This is the more realistic scenario of Self-Supervised Learning
where data becomes available continuously and must be used for train-
ing straight away. Contrary to regular Self-Supervised Learning methods
where they need to go hundreds of times through a dataset to produce
suitable representations, Online Self-Supervised Learning has a limited
budget for training iterations for the new data points from the stream.
Additionally, the training can potentially continue indefinitely without a
specific end. We propose a framework for Online Self-supervised Learn-
ing with the goal of learning as much as possible from the newly arrived
batch of data in a limited amount of training iterations before the next
batch becomes available. To achieve this goal we use a cycle of aggressive
learning rate increase for every batch of data which is combined with a
memory to reduce overfitting on the current batch and forgetting the
knowledge gained from previous batches. Additionally, we propose Re-
ducible Anchor Loss Selection (RALS) to intelligently select the most
useful samples from the combination of the new batch and samples from
the memory. Considering the limitation of a smaller number of iterations
over the data, multiple empirical results on CIFAR-100 and ImageNet-
100 datasets show the effectiveness of our approach.

Keywords: Self-Supervised Learning - Continual Learning.

1 Introduction

Large amounts of unlabeled visual data are being generated every day from mul-
tiple sources like smartphones, surveillance cameras, self-driving cars, etc. Self-
supervised Learning (SSL) can make use of this limitless data to learn strong
representations that can be used to improve various downstream tasks. How-
ever, training on the possibly infinite data is a real challenge. Recent methods
like [I0/I7] provide models that are able to learn continually from unlabeled data.
These methods process large chunks of data in the form of new tasks on which
they usually spend a significant amount of training epochs. In a scenario where
new data arrives in an online fashion from a stream, these approaches are not us-
able due to the long training process. Therefore, Online Self-Supervised Learning
(OSSL) methods capable of learning from streaming data must be developed.
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Trainer

Fig. 1: Illustration of a scenario where a stream is generating batches of data
with a time difference between each batch. Trainer has a limited amount of time
to learn from the currently available batch of data before the next batch arrives.

Considering a stream of data where there is limited time between the prepa-
ration of each data batch from the stream (see Figure , we need to restrict the
number of training iterations on the batch in order for the training to continue
on the new batch. With a potentially infinite data stream, the end of training is
unknown. Therefore, another challenge is that the usual learning rate schedulers
requiring the end of training to be specified can not be used out of the box in
the online learning setting.

We propose Single Local Cycle Learning Rate Scheduler (SLCLRS) in order
to tackle the challenges of infinite data with an unknown ending and the need for
faster learning from the currently available batch of data with limited training
steps. This is inspired by [28] which uses the One Cycle Learning Rate Scheduler
(OCLRS) to increase the learning rate to a large value midway through the
training epochs and then gradually decrease it to a very small value towards
the ending epoch which in turn speeds up the training process. However, this
scheduler works based on the whole training process. In order to tackle the online
scenario we use SLCLRS with a limited number of training steps for every new
batch that arrives to address the previous challenges.

Additionally, we propose Reducible Anchor Loss Selection (RALS) to select
the most suitable samples in the online learning setting considering the change
of the loss for the samples based on the current model and the anchor model
trained prior to getting the current batch of data. This is based on Reducible
Holdout Loss Selection (RHO-LOSS) [19] that follows the direction of choosing
the most suitable samples for training based on a loss increase from a pre-trained
model on a hold-out set. However, RHO-LOSS works in an offline setting with a
static model. RALS on the other hand uses a dynamic anchor model to calculate
the selection criteria.
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The rest of the paper is organized as follows. First, in Sec. [2] the related
works are briefly discussed. A formalized problem definition is provided in Sec. [3]
Details of our framework are given in Sec. 4] This is followed by experiments and
analysis in Sec. [} We conclude the paper in Sec. [6]

2 Related Works

Continual Learning. Continual Learning has the goal of learning new tasks
continually without forgetting the previously learned tasks. The main tech-
niques used to tackle the Continual Learning problem are Regularization-based,
Memory-based, or Parameter Isolation-based.

Regularization-based methods simply add a regularization term to limit the
changes happening to the parameters of the model to stop it from forgetting the
previous tasks [T5ITI3I32123IT6I6IT2].

Memory-based methods keep a portion of data in a memory [2/4I522]24].
By combining the samples in the memory with the samples in the new task,
catastrophic forgetting can be mitigated.

Among memory-based methods, Maximally Interfered Retrieval (MIR) [2] is
the most similar to our work. They use a combination of samples from memory
and the new task to train a supervised model. An optimization step is performed
using only the new samples to find the samples in the memory with the highest
increase in loss to be retrieved for training.

Parameter Isolation based methods tackle forgetting by using different pa-
rameters for each task [I8/927126130]. This can be achieved by using different
parameters inside a fixed model for each task or by adding new parameters for
every new task.

Continual Self-Supervised Learning. Continual Self-Supervised Learn-
ing is a relatively new topic. Lifelong Unsupervised Mixup (LUMP) [I7] shows
that features learned using unsupervised continual learning provide better gen-
eralization and suffer less from catastrophic forgetting. They also propose to
interpolate samples from a memory with the current task samples to reduce
forgetting.

CaSSLe [10] proposes a Continual Self-Supervised Learning approach that
utilizes a distillation mechanism compatible with various self-supervised Learn-
ing algorithms instead of a memory to reduce forgetting and it achieves impres-
sive results. However, the training process takes a lot of epochs which makes it
unable to work in an online setting.

Most recently, in the concurrent work of [2I] the problem of Continuous
Self-Supervised Learning is studied. They mainly address the Non-IID nature of
correlated streaming data through the use of a Minimum Redundancy Buffer.
Our method is similar to this work with the difference that we focus on speed-
ing up the self-supervised Learning convergence on the provided data stream
without explicitly handling Non-ITD data. Similar ideas like [2I] can be used in
combination with our approach to implicitly consider the Non-IID data but it is
not the focus of this paper.
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Fig. 2: Overview of our proposed method. Every batch of data X; that arrives at
time ¢ from the stream is used in combination with a batch of data X" from a
memory M for training a model for a limited number of steps N using the single
local cycle learning rate scheduler before the next batch gets ready. Reducible
anchor loss selection is also used to find the best possible subset of samples in
order to provide even more speed up for training.

3 Problem Definition

Regular Self-Supervised Learning methods have access to all the samples in
the dataset D during training. In each training step, a batch of images X is
sampled from D and two augmentations x; and o are generated from it. These
augmentations are fed to a model f to produce representations z; and zs. f is
parameterized by 6 = (0, 0,) where 6, and 6, are the parameters for backbone
and projection layers, respectively. A self-supervised loss function Lg(z1,22) is
used to optimize the parameters 6 based on z; and zo:

B

> L2, 2). (1)

b

In Continual Self-supervised Learning (CSSL) the model is trained on a sequence
of T tasks on different corresponding chunks of the dataset D = (Dy, Do, ..., Dr).
These chunks of data are sequentially provided to the model without access to
the other chunks. However, it considers no limits on the time and epochs to train
the model on every subset of D. The model must be trained in a way that in
addition to learning from new data chunks, it does not forget what was learned
from previous chunks. Therefore self-supervised loss on all the subsets of D must
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be minimized:
T B

ZZﬁs zlft,ZQ . (2)

We address the more realistic setting where data source D is a stream (with pos-
sibly non i.i.d data) and the training must happen in an online approach. Every
batch of data X} that arrives at time ¢ from the stream must be used for training
for a limited amount of time before the next batch gets ready. The objective for
Online Self-Supervised Learning (OSSL) can be considered as an extreme case
of CSSL where the chunks of data are small and the number of OSSL tasks Ty is
much larger than CSSL ones (Tp > T'). Therefore, the objective will be similar

to CSSL:
To Bi
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Our goal is to learn representations using X as fast as possible without having
access to future data or the past data except the ones stored in a memory M.
Additionally, we avoid using learning rate schedulers that consider an end for
the data stream.

4 Proposed Method

The goal of our approach is to improve the speed of convergence for Online Self-
Supervised Learning considering the challenges of the unknown end of training
and a limited number of training iterations per new batch of data from the
stream. In this section, we describe the proposed framework and describe how
SLCLRS and RALS are incorporated into it. An overview of our approach is
presented in Figure [2]

4.1 Single Local Cycle Learning Rate Scheduler

In a regular training setting OCLRS is used to achieve comparable performance
with fewer training epochs by increasing the learning rate to a high value at the
beginning of the training and reducing it to a much smaller value at the end.
We suggest that a batch of data is the small version of the dataset and we can
use a single cycle of increasing and decreasing the learning rate in the current
local iteration corresponding to the new batch of data X in order to speed up
learning this batch. The duration of this cycle is based on the available budget
for the training steps in the current local iteration.

Using an aggressive scheduler on just the new batch X} will lead to overfitting
on that batch and possibly forgetting the previously learned representations.
Therefore, we store a portion of data in the memory M and combine a batch
from memory X" with the new batch from stream X} in every training step n
(similar to [2]). Given the optimizer o and scheduler s for n € 1,..., N where N
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is the number of training steps for each batch of data, the training process can
be written as follows:

_.m s
Y1 = @xlv

m s
Yo = Ty D Ty,

Z{Lil = f9t+n71(y1)’
Zgil = f9t+n71 (y2)7
Et—i—n = l:S(Z?_la Z;l_l)7 (6)

Qofly = 8(0),
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Here, (z7*, 24") and (x5, x5) are the augmentations created from X" and X},
respectively. @ shows the concatenation along the batch dimension and (y1,y2)
are the concatenated augmentations. fg,, . , is the model optimized for n — 1
steps after receiving the batch of data at step ¢. This model is used to produce
the representations (27!, 207!) which in turn are used to calculate the loss
L1y at step n. The scheduler updates the learning rate «,, and momentum g,
based on step n then the optimizer calculates the new set of parameters 6;,.,, for
step n. The reason we also update the momentum is that the positive effect of
reducing it while increasing the learning rate was observed in [28].

The scheduler in [28] uses linear functions for increasing and decreasing the
learning rate. However, we utilize the cosine function version provided in Py-
Torch [20] which is in turn based on Fastai’s implementation [I3]. An illustration
of the learning rate and momentum schedules we use with a different number of
training steps per batch is provided in the Appendix.

As previously mentioned, one of the challenges of OSSL is the possibly un-
known ending. The benefit of using SLCLRS with every new batch is that we
do not need to consider an ending for the training and this procedure can con-
tinue indefinitely given a data stream. The training can stop at the end of every
iteration knowing sufficient optimization was performed on the latest data from
the stream.

It should be noted that we use simple random sampling for both memory
update and retrieval. More complex strategies to handle the memory can be
used for more efficient memory management but it was not the focus of our
work.

4.2 Reducible Anchor Loss Selection

The use of memory in combination with different augmentations (5, z5) at each
training step n can reduce the chances of overfitting on the new batch X; but it
can still happen. Additionally, we suggest a scenario exists that the loss for some
samples of X stops decreasing which in turn slows down the convergence on the
combined set of samples. Therefore, selecting samples with the highest increase
in loss compared to the beginning step of this iteration can help speed up the
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convergence. The inspiration for this idea comes from the reducible holdout loss
selection of Mindermann et al [I9]. Given a model for training, this method
finds the data points with the highest increase in loss compared to the loss of
the pre-trained model on a holdout set. These points are then used for training.
However, in our use case, we do not necessarily have a holdout set. Instead, we
consider the model at the beginning of the iteration fy, as an anchor model to
also limit the divergence of parameters from the anchor point. Our method with
RALS can be described as follows:

Ly = L&), 2),
‘C%ALS = ‘Ci-i-n - 27
1 .
Ltopk = P Z £i+n

jEtOpk(;Cj?‘ALS)

(9)

Here, L}, shows the loss at step n for the individual sample i. Reducible
anchor loss L% 41 ¢ is the increase in loss for sample ¢ and it is used as the metric
for the selection process. Finally, based on the reducible anchor loss metric, the
average loss over top k samples is calculated as Liop,, and the optimization is
performed based on this loss. This approach should lead to faster convergence
by focusing on the more important points. In practice in order to find the top
k samples, initially we run the models in inference mode without calculating
gradients. Then only the selected samples are fed again to the model for training.

Multiple scenarios can lead to a data sample having high reducible anchor
loss. First, if the model started overfitting on a sample at step n, its loss value
for that sample will start to decrease compared to the frozen anchor model.
Therefore, due to lower L% ,; <, the probability of being selected among the top
RALS samples would decrease leading to less overfitting on that sample. Second,
a sample from the memory would probably have a lower loss with fp,. If this
loss increases at step n, it could mean that the model has started to forget the
representations learned from this sample. Therefore, it will be selected based
on reducible anchor loss for training which in turn will lead to less forgetting.
Finally, similar to [19], less relevant and noisy samples will also not get into
selected samples due to already high L.

4.3 Integration of SSL Methods

We studied two popular Self-Supervised Learning methods of SimCLR [7], and
Barlow Twins [31] in our proposed framework. A summary of each method and
the approach taken to calculate individual loss values is provided next.
SimCLR [7] is a contrastive Self-Supervised Learning method that uses a
contrastive loss to learn representations from two augmentations of a set of
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images. The contrastive loss for a pair of positive samples ¢,j is written as
follows:

exp(sim(z;, z;)/T)
e Lppgeap(sim(zi, z) /7)
The total loss for SimCLR is calculated by summing all the positive pairs in the
batch [7]. Here, the sum of elements ; j, and [;; corresponding to the augmen-
tations of the same image is used as the loss term for the reducible anchor loss
calculation.

Barlow Twins [31] uses a different loss function based on a cross-correlation
matrix which computes a single combined output for all the samples in the batch
without providing individual loss values. Given the mean-centered representa-
tions Z4 and ZP from two augmented views of a batch of images, the cross-
correlation matrix Cj; is calculated as follows:

= 20 2%
1y — 5 27
VG, )

Then the loss function for Barlow Twins £Lpr is calculated as:

£BT:Z(1—CZ']‘)2+)\ZZC§]' (12)

i i j#i

l —log (10)

(A

(11)

It is not straightforward to extract individual loss terms from this loss function.
In order to calculate reducible anchor loss, we divide the available batch of data
into multiple smaller parts with /V,, images in each part p. Then we can calculate
L pr on these parts which are treated as a group and the selection of the whole
group depends on the calculated reducible anchor loss of each part.

5 Experimental Results

In this section, we provide details about datasets, experiment settings, and im-
plementation followed by results and various analyses on the mentioned datasets
with our method. Additional details and experiments can be found in the sup-
plementary material.

5.1 Datasets

CIFAR-100. This dataset consist of 60,000 small 32 x 32 images from 100
classes [I4]. 50,000 of these images are used for training leaving the rest for
testing. Although our method does not need to know the task boundaries, in
order to have fair comparisons, we use the same 5-task class incremental setting
as [I0] for training. Therefore, the dataset is divided into 5 subsets of 20 classes
and each chunk is fed in the same sequence to our model.

ImageNet-100. This dataset [29] is a 100 class subset of ImageNet [25] large-
scale dataset. Training data consists of approximately 127k images (maximum of
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1300 per class). 5000 images are also used for evaluation (50 per class). Similar
to CIFAR-100, we feed the data in a 5-class class incremental setting to the
models.

5.2 Settings

We follow the same setting as [I0] to train and evaluate the models. All the
models and baselines are trained with self-supervision on the training parts of
the datasets. For the evaluation, the backbones are frozen and a linear model
is trained on the outputs of the frozen backbone using the train set. Then the
accuracy of the validation set is reported. In addition to our method, we conduct
experiments using the CaSSLe [10] and an offline approach. To the best of our
knowledge, the CaSSLe is the closest work to our method on CIFAR-100 and
ImageNet-100 datasets. Our method has the disadvantage of being limited by
the online setting but it also uses a larger batch of data in each step due to the
use of memory. Therefore, a completely fair comparison is not possible and we
mostly treat CaSSLe as a good base point to compare our approach.

The data of the first task in both datasets are used for offline pretraining in
order to make comparisons with [I0]. All the methods are initialized with the
pre-trained weights of the offline model. In all the settings, training is executed
for a varying number of steps to analyze the speed of convergence.

Offline. This setting is the regular training with access to the whole dataset.
Since it does not have a method to prevent forgetting, we also include the data
from the first task in this setting.

CaSSLe. The method proposed in [I0] where the data from each task is pro-
cessed multiple times separately without having access to the data from other
tasks. A distillation mechanism is used to prevent forgetting.

Ours. Our proposed method in which the data is processed in an online ap-
proach. We include experiments with and without using RALS to analyze the
effects of different parts of our work.

5.3 Implementation Details

We build upon the implementation provided by [10] which is itself based on [§].
The source code will be available at https://github.com/sinaazar/SpeedOSSL
We adopt the same data preparation process as [10]. We use a batch size of 128
for streaming data. When training without RALS, the same 128 value is used to
get a batch of data from the Memory. This value is increased to 256 when using
RALS. While using RALS with Barlow Twins and SimCLR we choose k = 256
out of 384 samples in each step. Part size N, for Barlow Twins is set to 16 in all
the experiments. We use ResNet18 [II] as the backbone model.

The maximum learning rate for the scheduler is set to 0.1 in ImageNet-100
experiments for both the Barlow Twins and SimCLR. On CIFAR-100, we use
0.05 and 1.0 for Barlow Twins and SimCLR, respectively. The initial learning
rate is set to 0.1 of the maximum learning rate in all the settings. Maximum
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and minimum amounts for momentum are set to 0.95 and 0.85. All the experi-
ments increase/decrease learning rate/momentum halfway through the training
steps on each batch except the 50 steps experiments which the increase lasts
for a quarter of the training steps. The default memory size for experiments on
CIFAR-100 and ImageNet-100 is 10000 and 20000, respectively.

Steps Strategy CIFAR-100 Acc |ImageNet-100 Acc
BT BIJ[SCLR [7]|BT[31]] SCLR [7]
Offline 48.5 50.68 44.74 58.94
10 CaSSLe [10] 50.89 | 49.48 | 49.70 59.70
Ours Without RALS| 55.39 | 50.39 | 66.10 64.64
Ours 55.75 50.63 66.94 64.86
Offline 56.23 | 51.71 | 67.94 67.84
20 CaSSLe [10] 54.35 | 50.34 | 64.48 | 63.74
Ours Without RALS| 55.95 52.44 | 67.02 66.26
Ours 56.64 | 52.77 | 68.18 66.78
Offline 59.64 54.29 69.24 71.26
50 CaSSLe [10] 56.25 51.83 | 67.56 65.56
Ours Without RALS| 57.15 53.25 | 66.92 67.48
Ours 58.48 | 54.76 | 68.40 67.98
100 Offline 62.93 56.64 74.66 73.28
CaSSLe [10] 57.48 | 53.19 | 69.74 66.94
Full CaSSLe |10] 58.26 | 55.91 | 69.90 | 67.96

Table 1: Comparison of results of SimCLR (SCLR) [7] and Barlow Twins
(BT) [31] methods with various approaches and training steps on CIFAR-100
and ImageNet-100. The focus of this work is on a smaller number of steps but
the longer trained versions of CaSSLe [10] are also reported for more insights.

5.4 CIFAR-100 Results

The results for CIFAR-100 [I4] and ImageNet-100 dataset [29] datasets are
presented in Table[I] Here, the linear evaluation accuracies for different strategies
with a varying number of training steps are provided for SimCLR and Barlow
Twins. Starting from SimCLR with 10 steps, our method outperforms CaSSLe
trained for 10 and 20 steps with or without using RALS. This holds when the 20
steps version is compared with CaSSLe trained for 20 and 50 steps. Generally,
increasing the number of steps shows similar improvements for our approach
compared to CaSSLe. This compensates for the fact that an additional batch
from memory is added to the streaming batch during the training of our method.

We observe similar results to SimCLR when training the model with the Bar-
low Twins method. Here, the difference in accuracy with CaSSLe becomes even
larger in the 10-step setting. Again in all the step numbers, we see improvements
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over CaSSLe. It is also interesting to see that our method with RALS slightly
outperforms the fully trained CaSSLe. The offline setting starts to dominate the
results starting from 50 steps.

In all the experiments, including RALS leads to better performance than not
including it albeit marginally in some scenarios. Generally, it can be observed
that with more training steps we see higher improvements with RALS compared
to only using the SLCLRS.

5.5 ImageNet-100 Results

Similar to CIFAR-100, we can see consistent improvements in all the training
step numbers for both SimCLR and Barlow Twins. In all cases, using RALS
leads to improvements compared to not using it. The improvements are more
noticeable when using Barlow Twins. Based on these results and the reported
accuracies from CIFAR-100, we can confidently validate the impact of RALS.

Similar to CIFAR-100 results, we see better performance from our method
with RALS compared to CaSSLe in a higher step number setting. SimCLR
results show the 50-step training version of our method performing on par with
the fully trained version of the CaSSLe.

Overall, it can be seen that with steps as little as 10, noticeable results like
64.86% with SimCLR and 66.94% with Barlow Twins can be achieved in an
online training scenario while using the ImageNet-100 dataset.

Memory Size[SimCLR [7] Acc[Barlow Twins [31] Acc

2000 50.43 55.68
5000 52.47 55.63
10000 52.77 56.64
20000 53.41 56.29

Table 2: Comparison of results of our approach with different backbone methods
and memory sizes on CIFAR-100 while training the full model for 20 steps.

5.6 Analysis

Memory. The main goal of our method is to learn from a stream of data as
fast as possible. Therefore, we are tackling a more challenging setup than offline
Continual Self-Supervised Learning. Generally, it is not expected to be able
to outperform offline CSSL. However, with a big enough memory, we observed
improvements when only a small number of training steps are allowed. Table [2]
shows the results on CIFAR-100 datasets for our full model trained for 20 steps
with varying memory sizes. It can be observed that generally the bigger the
memory the better the results.
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Fig.3: (a) Comparison of the accuracy of our method trained with different
numbers of batches sampled from the memory in each iteration. The training was
performed for 20 steps in each iteration with the Barlow Twins SSL algorithm on
both CIFAR-100 and ImageNet-100 datasets. (b) Progression of selection ratio
of the new batch to the combination of the new batch and samples drawn from
the memory. The average ratio for the past 100 iterations in addition to the last
iteration ratio for a 20-step training is shown here.

Considering the advantage of being online trainable, our approach is still
interesting even with smaller memory size.

In Figure [3] (a), we can see the effect of increasing the number of batches
sampled from the memory relative to the newly arrived batch of data. Based on
the available training time between two iterations, the number of batches sam-
pled from the memory can be increased to improve performance. The intuition
behind it is that the RALS will have more samples to select from which in turn
will lead to the selection of samples with higher reducible anchor loss.

Selection Behaviour. In order to get a better understanding of the distri-
bution of the samples prioritized by the RALS during the local training steps, we
keep track of the number of images selected from the new batch and the samples
randomly selected from the memory. More specifically, we calculate the ratio of
samples selected from the new batch to the total number of samples used in
the current iteration. A visualization is provided in Figure (3| (b) where it shows
the average ratio over a period of 100 iterations during training and the ratio of
the last iteration. We can see that on average, during the initial steps of each
local training session, the samples from the new batch are randomly selected.
However, when the current model starts to deviate from the anchor model, the
RALS starts to select samples more intelligently and it is easy to see that the
more the new samples are used for training the less likely they are to be selected.
This means the reducible anchor loss is indeed reducing for these samples and
the model is learning quickly from them. It is also worth mentioning that the
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last iteration ratio is not necessarily monotonically decreasing like the average
ratio which shows the flexibility of RALS based on the current distribution of
samples.

6 Conclusion

In this work, we discussed the challenge of speeding up Online Self-Supervised
Learning. We proposed using Single Local Cycle Learning Rate Scheduler to
learn from the new samples of a stream of images as fast as possible. Additionally,
the idea of Reducible Anchor Loss Selection was proposed to speed up training
by selecting more useful samples. The results on both CIFAR-100 and ImageNet-
100 with self-supervised learning methods of SImCLR and Barlow Twins showed
consistent improvements on the speed of convergence.
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