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Abstract. Radars and cameras belong to the most frequently used sen-
sors for advanced driver assistance systems and automated driving re-
search. However, there has been surprisingly little research on radar-
camera fusion with neural networks. One of the reasons is a lack of
large-scale automotive datasets with radar and unmasked camera data,
with the exception of the nuScenes dataset. Another reason is the dif-
ficulty of effectively fusing the sparse radar point cloud on the bird’s
eye view (BEV) plane with the dense images on the perspective plane.
The recent trend of camera-based 3D object detection using BEV fea-
tures has enabled a new type of fusion, which is better suited for radars.
In this work, we present RC-BEVFusion, a modular radar-camera fu-
sion network on the BEV plane. We propose two novel radar encoder
branches, and show that they can be incorporated into several state-
of-the-art camera-based architectures. We show significant performance
gains of up to 28% increase in the nuScenes detection score, which is
an important step in radar-camera fusion research. Without tuning our
model for the nuScenes benchmark, we achieve the best result among all
published methods in the radar-camera fusion category.

1 Introduction

The development of advanced driver assistance systems (ADAS) and automated
driving functions has made remarkable progress in recent years, resulting in in-
creased safety and convenience for drivers. A robust environment perception is
the key requirement for these systems, which rely on sensors such as radar, cam-
era, or LiDAR to detect surrounding objects. Each sensor has its own advantages
and disadvantages that must be considered when designing a perception system.
An extensive review on multi-modular automotive object detection is presented
in [4].

Radar sensors are advantageous in that they are less affected by adverse en-
vironmental conditions such as rain, fog, or darkness, and they have a longer
detection range when compared to cameras and LiDARs. However, they are
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Fig. 1: Overview of RC-BEVFusion network architecture. The block marked in grey is
inherited from an exchangeable camera-only baseline, while the block marked in blue
shows our proposed radar-camera fusion plug-in module.

limited in their ability to provide detailed information about the shape and tex-
ture of objects [58]. Cameras, on the other hand, provide rich visual information
and can recognize objects based on their appearance, but their performance
can be affected by changes in lighting conditions and inaccurate depth estima-
tion [11, 24]. LiDARs provide detailed 3D information and are less affected by
lighting conditions, but they can be expensive and have limited range [58].

Sensor fusion has the potential to overcome these limitations of individual
sensors. In particular, the combination of radar and camera sensors arguably
offers the most complementary features. The main challenge is how to associate
radar and camera features given that conventional radars provide data on the
bird’s eye view (BEV) plane, whereas cameras provide data on the image plane.
Projecting radar points to the image discards too much geometric information,
whereas projecting camera features to the sparse radar points discards too much
semantic information [22].

Recent advancements in camera-only networks using view transformers [10,
36] have enabled a new type of fusion on the BEV plane, which is well suited
for radar data. In this paper, we propose RC-BEVFusion, a novel radar-camera
fusion architecture on the BEV plane inspired by [22] and illustrated in Fig-
ure 1. In contrast to previous radar-camera fusion techniques [14, 31, 35], our
architecture allows radar and camera features to equally contribute to the final
detections, enabling the network to detect obstacles that may be missed by one
of the modalities. It is a flexible architecture that inherits several elements from
an exchangable camera-only baseline: a camera encoder, a camera-to-BEV view
transformer, a BEV encoder and a detection head. On top of these modules, we
propose two radar encoder branches: RadarGridMap and BEVFeatureNet. Our
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results show that they can be used as a plug-in module in various camera-based
architectures and significantly enhance their performance.

To train and evaluate our network, we need a large-scale automotive dataset
with radar point clouds, unmasked camera images with a lot of variety in the
scenes and 3D object annotations. A recent overview on radar datasets is given
in [58]. First, there are datasets with conventional 2+1D radar sensors that
provide a list of detections with measurements of the range, range rate, azimuth
angle, and radar cross section (RCS). Out of these, the nuScenes dataset [1]
is the only one that fulfils our requirements. Second, there are recent datasets
with high-performance 3+1D radar sensors that provide denser point clouds and
additionally measure the elevation angle. From this group, the Astyx [27] dataset
is too small, while the View-of-Delft [34] dataset is medium-sized but has limited
visual variety in the images due to the high annotation frequency. The recently
presented TJ4DRadSet [55] may be a future option but the data is not fully
released yet. In this work, we therefore choose to conduct our experiments with
the nuScenes dataset [1].

The remaining paper is organized as follows. Section 2 provides an overview
of related work on automotive object detection with camera-only, radar-only
and radar-camera fusion. Section 3 describes the proposed radar-camera fusion
architecture on the BEV plane. Section 4 presents extensive experimental results
on the nuScenes dataset and demonstrates the effectiveness of the proposed
architecture. Finally, Section 5 concludes the paper and outlines future work.

2 Related work

The task of 3D object detection is mostly conducted with the help of cam-
eras, LiDARs and, less frequently, radars. In the following, we give an overview
of recent advances on image-only and radar-only object detection, as well as
LiDAR-camera and radar-camera sensor fusion.

2.1 Image-only object detection

Image-based 3D object detection is a difficult task in the field of computer vision
because it involves identifying and localizing objects in 3D space using only a
single camera as a sensor. This is in contrast to LiDAR and radar systems, which
provide depth measurements and can more accurately determine the 3D location
of objects.

Early approaches to image-based 3D object detection focused on using known
geometric information to estimate 3D bounding boxes from 2D detections [28].
More recent techniques have extended existing 2D object detection models with
additional detection heads specifically designed for 3D object detection [43, 48,
57]. Some approaches have also used predicted depth maps as auxiliary features
[26] or to create a pseudo-LiDAR point cloud, which is then processed using
LiDAR-based object detectors [49].
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The most recent research in this area has mainly followed two directions.
The first is the use of transformer-based techniques, which leverage the ability
of transformer models to process sequences of data and perform self-attention
to learn more complex relationships between features [20,50]. The second direc-
tion is the development of BEV-based object detectors. To this end, the features
need to be transformed from the image plane to the BEV plane. A pioneering
work uses orthographic feature transform [39], where a voxel grid is projected to
the image to extract features. To reduce memory consumption, the voxel grid is
then collapsed along the vertical axis to create BEV features. More recent meth-
ods are based on the Lift-Splat-Shoot (LSS) view transformer [36], which lifts
image features into a 3D pseudo point cloud via dense depth prediction, before
again collapsing the vertical dimension to create BEV features. The idea is first
incorporated into a 3D object detection network in [10], and later refined with
LiDAR-based depth supervision [18] and temporal stereo [17]. In [56], a more
efficient view transformer in terms of memory and computations is introduced by
formulating LSS into matrix operations with decomposed ring and ray matrices,
and compressing image features and the estimated depth map along the vertical
dimension. In this work, we build upon these BEV-based object detectors and
integrate our radar-camera fusion as a plug-in module.

2.2 Radar-only object detection

Automotive radars are a common sensor used in autonomous vehicles for detect-
ing objects in the environment. These radars typically provide a preprocessed
list of detections, but the sparsity and lack of semantic information make it dif-
ficult to use the data for stand-alone 3D object detection. As a result, much of
the research in this area has focused on either semantic segmentation of radar
point clouds [42] or experimental setups using the raw radar cube [25,33].

Recently, there have been some point cloud-based techniques for object de-
tection as well. These can be broadly divided into convolutional and graph-based
approaches. Some convolutional approaches assign each point in the point cloud
to a cell in a BEV grid and include feature layers such as the maximum RCS
and Doppler values [5, 40]. Since the BEV grid is similar in structure to an
image, traditional convolutional networks can be applied for object detection.
Other convolutional approaches use variants of PointPillars [15] to create a pil-
lar grid automatically from the point cloud [34, 40]. In contrast, graph neural
network based approaches perform object detection directly on the radar point
cloud [3,41]. Recent work combines both approaches by first extracting features
with a graph neural network and then mapping the features to a BEV grid for
further processing [45]. In this work, we examine radar feature encoders inspired
by these ideas.

2.3 Sensor fusion object detection

Sensor fusion aims at leveraging the strengths of a diverse sensor combination.
Most sensor fusion research focuses on LiDAR-camera fusion, as LiDAR provides
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accurate 3D information and cameras provide high semantic value, while sharing
the same optical propagation principles. There are several techniques for fusing
LiDAR and camera data. Some approaches are based on projecting 2D detections
from the camera into a frustum and matching them with LiDAR points to refine
the 3D detections [37, 51]. Other techniques augment the LiDAR points with
semantics from the image and use LiDAR-based object detectors to perform
detection [7,46,47]. The most recent approaches to LiDAR-camera fusion involve
extracting BEV features from both the LiDAR and camera data and fusing
them on the BEV plane before applying a joint BEV encoder to perform object
detection [6, 19,22].

When compared to LiDAR, automotive radar uses a different wavelength
and measurement principle. As a consequence, radar typically shows strong RCS
fluctuations and reduced resolution in range and angle, resulting in less dense
point clouds. Moreover, whereas modern radars also measure elevation, many
conventional radars only provide detections on the BEV plane. These differences
make the fusion especially challenging and prevent the simple replacement of
LiDAR with radar processing. Early research commonly projected the radar
detections onto the image plane to associate the data. This approach can be
used to find regions of interest in the image [29,30] or to create additional image
channels with radar data that can be used with image-based networks [2,32,44].

More recent methods have moved away from this 2D approach and instead
focus on fusing based on 3D information. One approach is to refine image-based
3D detections with associated radar data [31]. This can be sub-optimal because it
discards the possibility of radar-only detections. Another approach is to project
3D regions of interest (ROIs) to the image and BEV plane to extract features
from each sensor [13]. Finally, cross-attention has been used to align and fuse
the features in 3D [12,35]. In this work, we propose a novel architecture to fuse
radar and camera data on the BEV plane.

3 RC-BEVFusion

In this section, we describe our proposed model architectures. We start by giving
an overview of the general fusion architecture, before providing more detail on
the proposed radar encoders, the camera-only networks we use as baselines and
the loss function.

3.1 Overview

In this work, we introduce a novel radar branch and use it as a plug-in mod-
ule on different camera-based 3D object detection networks to improve their
performance. The prerequisite for our proposed radar-camera fusion is that the
camera-only network uses BEV features as an intermediate representation. The
general architecture is shown in Figure 1. The block marked in grey is inher-
ited from an exchangeable camera-only baseline, while the block marked in blue
shows our proposed radar plug-in module.
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Fig. 2: BEVFeatureNet radar encoder. The radar detections are mapped to BEV grid
cells for augmentation and restructuring into a dense tensor. After applying a simplified
PointNet, the encoded features are remapped to the BEV grid.

First, BEV features are extracted from the images and the radar point cloud
separately. To this end, a backbone network is used to extract features from
each image before they are transformed into joint BEV features with a view
transformer. We set up our radar encoder so that it creates BEV features in
the same shape and geometric orientation as the camera BEV features. The
features are then fused by concatenation followed by a 1×1 convolutional layer
that reduces the embedding dimension to the original dimension of the camera
BEV features. We can then use the same BEV encoder and 3D detection heads
that are used in the respective camera-only network, introducing little overhead
with our fusion.

3.2 Radar encoders

We propose two radar encoders, RadarGridMap and BEVFeatureNet, which we
explain in the following. They each consist of two stages: First, we create a
regular, structured BEV grid from the sparse radar point cloud. Then, we apply
a convolutional backbone that further encodes the BEV features.

RadarGridMap Inspired by [5], we design a hand-crafted radar BEV grid. We
map each detection to a cell on the grid and fill the cell with four channels: the
number of detections per cell, the maximum RCS value, and the minimum and
maximum signed compensated Doppler values.

After the grid mapping, we use a small generalized ResNet [8] as our radar
backbone. We use 16 layers grouped into residual blocks with BatchNorm and
ReLU. We use two downsampling stages that double the channels but reduce
the resolution of the BEV grid. We design the size of the BEV grid so that the
output of the radar backbone has the same shape as the camera BEV features.

BEVFeatureNet The BEVFeatureNet illustrated in Figure 2 is inspired by the
pillar feature encoding of PointPillars [15], but adapted for radar data. First, we
map each point of the radar point cloud to a cell in a predefined BEV grid. In
the original pillar feature encoding, each point in the LiDAR point cloud has
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Table 1: Camera-only network configurations. For FPN-LSS, SECOND-FPN and Gen-
eralized ResNet, we indicate the number of output channels of the module. For LSS
and MatrixVT, we indicate the number of channels and the resolution of the output
BEV feature in meters. MF denotes multi-frame temporal fusion.
Model Camera Encoder View Transf. BEV Encoder Head Input Res. MF

BEVDet [10] Swin-Tiny LSS Gen. ResNet-512 CenterPoint 704x256FPN-LSS-256 80-0.4-0.4 FPN-LSS-256

BEVDepth [18] ResNet-50 LSS ResNet-18 CenterPoint 704x256 ✓SECOND-FPN-128 80-0.8-0.8 SECOND-FPN-64

BEVStereo [17] ResNet-50 LSS ResNet-18 CenterPoint 704x256 ✓SECOND-FPN-128 80-0.8-0.8 SECOND-FPN-64

MatrixVT [56] ResNet-50 MatrixVT ResNet-18 CenterPoint 704x256SECOND-FPN-128 80-0.8-0.8 SECOND-FPN-64

coordinates x, y, and z, and reflectivity r. Further, the point is augmented with
the distances to the arithmetic mean of all points in its pillar, xc, yc, and zc
and the offsets to the pillar center xp and yp. The 2+1D radar point cloud in
nuScenes [1] does not have a z-coordinate or a reflectivity r, but instead it has
a radial velocity vd, measured via the Doppler effect, and an RCS. We therefore
discard the z-axis and its augmented feature, replace the reflectivity with the
RCS, and include the radial velocity values. We further aggregate multiple radar
sweeps and append the timestamp difference to the latest sweep ts to each point.
Thus, we obtain the 9-dimensional feature set:

F⃗ = [x, y,RCS, vd, ts, xc, yc, xp, yp] (1)

As in [15], we then use a set of non-empty BEV grid cells B with a fixed number
of points per cell Np to create a dense tensor of size (F,B,Np). If the number of
non-empty BEV grid cells or the number of points per cell is lower or higher than
the fixed number, we apply zero-padding or random sampling, respectively. For
each point, we then apply a simplified PointNet [38] with a 1×1 convolutional
layer followed by BatchNorm and ReLU resulting in a tensor of shape (C,B,Np),
before a max operation over the points per cell reduces the dimension to (C,B).
We then map the C-dimensional features back to their position on the BEV grid.
Finally, the same convolutional backbone as for RadarGridMap is applied.

3.3 Camera-only baselines

We selected various camera-only baselines to showcase the plug-in character of
our radar fusion module. In this section, we list details for the camera baselines
we examined. A compact overview of the modules is given in Table 1.

BEVDet BEVDet [10] is the first network that uses BEV-based features for
object detection on the nuScenes dataset. First, high-level features from each of
the Ni input images of shape (Hi,Wi) are extracted separately. To this end, a
SwinTransformer-Tiny [21] backbone network outputs multi-scale feature maps,
which are then processed using the feature pyramid network from [36], FPN-LSS,
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which upsamples the low resolution feature maps to match the high resolution
map, concatenates them and runs them through a ResNet [8] block. This leads
to a feature map of shape (Ni, Hi/8,Wi/8, C) with C feature channels. Then, a
1x1 convolution followed by a Softmax is used to predict a depth classification
into D pre-defined depth bins. An outer product across the feature and depth
classification channels creates a very large tensor of shape (Ni, Hi/8,Wi/8, D,C).
Using the intrinsic and extrinsic calibration matrices of each camera, this tensor
can be unprojected into a pseudo-pointcloud. The vertical dimension of this
pseudo-pointcloud is then collapsed by summing up the features from all points
that fall into the same cell of a pre-defined BEV grid with shape (Hbev,Wbev).
We follow the implementation of [22], which provides computationally efficient
BEV pooling and uses a heavier view transformer to enable more accurate depth
estimation, which is important to associate the features from radar and camera.
To further encode the BEV features, the generalized ResNet [8] structure from
[36] followed again by FPN-LSS is used.

BEVDepth BEVDepth [18] uses a similar structure to BEVDet [10] but aims
to achieve a more accurate depth estimation. To this end, the single convolu-
tional layer for depth estimation in BEVDet [10] is replaced with a camera-aware
DepthNet module, that concatenates and flattens the camera’s intrinsic and ex-
trinsic calibration parameters and uses an MLP to rescale them to match the
dimension of the image features C. This calibration vector is used to re-weight
the image features using a Squeeze-and-Excitation module [9]. During training,
BEVDepth [18] further uses the depth value from projected LiDAR points on the
image to directly supervise the depth estimation via binary cross-entropy loss.
We use the released configuration, which encodes the images with a ResNet-
50 [8] backbone followed by the feature pyramid net from [52], SECOND-FPN,
which concatenates upsampled multi-scale feature maps. The BEV encoder uses
a ResNet-18 again followed by SECOND-FPN. The view transformer has a lower
resolution than the one we use for BEVDet [10]. It also uses a multi-frame fu-
sion with one previous keyframe, thus two images from each camera taken 500ms
apart are used to create the BEV features, resulting in more accurate velocity
estimation.

BEVStereo BEVStereo [17] builds upon BEVDepth [18] and uses the same
configuration for most modules. In addition to the monocular depth estimation
with DepthNet, it introduces a temporal stereo depth estimation module, which
is based on multi-view-stereo [53]. To this end, for each pixel in the current
image feature map, several depth candidates are predicted and used to retrieve
corresponding features from the previous image features using a homography
warping. The confidence of each candidate is evaluated based on the current
and previous feature’s similarity and used to iteratively optimize the depth can-
didates. After three iterations, the depth candidates are used to construct the
stereo depth. Since the stereo depth is not viable for pixels that do not have cor-
responding pixels in the previous image, a convolutional WeightNet module is
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used to combine the monocular depth estimations from the current and previous
image with the stereo depth estimation to produce the final depth estimates.

MatrixVT In MatrixVT [56], an alternative view transformer is proposed. The
view transformation step of LSS [36] is first generalized into matrix operations,
which leads to a very large and sparse feature transportation tensor of shape
(Hbev,Wbev, Ni, Hi/8,Wi/8, D), which transforms the image feature tensor with
depth estimates to the BEV features. To combat this, the image feature and the
dense depth prediction are compressed along the vertical dimension, resulting in
prime feature and prime depth matrices. This is feasible due to the low response
variance in the height dimension of the image. To further reduce its sparsity,
the feature transportation tensor is orthogonally decomposed into a ring tensor,
which encodes distance information, and a ray tensor, which encodes directional
information. Using efficient mathematical operations, the resulting view trans-
former achieves lower computational cost and memory requirements. We use a
configuration based on BEVDepth [18], which only replaces the view transformer
with MatrixVT [56] and does not use multi-frame fusion.

3.4 Detection Head and Loss

All examined camera baselines use the CenterPoint [54] detection head, so we
can apply the same loss in all architectures. For each class k, CenterPoint [54]
predicts a BEV heatmap with peaks at object center locations. The heatmap
is trained using a ground-truth heatmap y filled with Gaussian distributions
around ground truth object centers. Given the heatmap score pkij at position
i, j in the BEV grid and the ground truth ykij , we can compute the Gaussian
focal loss [16] as:

Lhm = − 1

No

K∑
k=1

Hbev∑
i=1

Wbev∑
j=1

{
(1− pkij)

α log (pkij) ykij = 1

(1− ykij)
β(pkij)

α log (1− pkij) otherwise
(2)

where No is the number of objects per image, K is the number of classes, Hbev

and Wbev are the height and width of the BEV grid, and α and β are hyper-
parameters. In addition, CenterPoint [54] has regression heads that output all
parameters needed to decode 3D bounding boxes: a sub-pixel location refine-
ment, a height above ground, the dimensions, the velocity, and the sine and
cosine of the yaw rotation angle. The regression heads are trained with L1 loss.

4 Experimental Results

In this section, we present our experimental results. We first give some more in-
formation on the dataset, evaluation metrics and training settings. We then list
quantitative results on the nuScenes validation set to ensure a fair comparison
between our proposed fusion networks with their camera-only baselines. We also
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show results for the nuScenes [1] test benchmark and provide an inference ex-
ample for a qualitative comparison. Ablative studies, detailed class-wise results,
rain and night scene evaluation and more qualitative examples are provided in
the supplementary material.

4.1 Data and metrics

For our experiments, we need a large-scale, real-world dataset with unmasked
camera images, series-production automotive radars and 3D bounding box an-
notations. To the best of our knowledge, the nuScenes dataset [1] is currently
the only dataset that fulfils these requirements. It covers data from six cam-
eras at 12Hz, five conventional 2+1D radar sensors at 13 Hz and one LiDAR
at 20 Hz, as well as 1.4 million 3D bounding boxes annotated at 2Hz. We fol-
low the official splits into 700 training, 150 validation and 150 test scenes and
reduce the 27 annotated classes to the 10 classes evaluated on the benchmark.
We also use the official metrics: the mean average precision (mAP), the true
positive metrics covering mean errors for translation (mATE), scale (mASE),
orientation (mAOE), velocity (mAVE) and nuScenes attribute (mAAE), as well
as the condensed nuScenes detection score (NDS).

4.2 Quantitative Evaluation

Training details For our radar-camera fusion networks, we adopt the con-
figurations from the camera-only baselines listed in Table 1 to allow for a fair
comparison. In addition, we design our radar encoder branch so that the BEV
features have the same shape and orientation as the camera BEV features. To in-
crease the point cloud density while limiting the use of outdated data, we choose
to aggregate five radar sweeps, which corresponds to 300ms of past data. The
aggregated radar point cloud is still sparse when compared with LiDAR data,
so that we can reduce the number of non-empty grid cells and points per grid
cell of the BEVFeatureNet drastically with respect to the pillar feature encod-
ing in [15]. We empirically find that setting B = 2000, Np = 10, and C = 32 is
sufficient, which allows for little computational overhead. For the Gaussian focal
loss, we follow [16] and set α = 2 and β = 4. We train for 20 epochs with an
AdamW [23] optimizer, a base learning rate of 2e-4 and weight decay of 1e-2.

NuScenes validation results We show the results for our radar-camera fu-
sion networks w.r.t. their camera-only baselines on the nuScenes validation split
in Table 2. First, we compare the two radar encoders with our model based on
BEVDet. In both cases, the proposed fusion offers significant performance in-
creases, with the mAP increasing up to 24% and the NDS 28%. The up to 23%
reduced translation error shows how the direct depth measurements provided by
the radar can lead to more precise location predictions. The most significant im-
provement of 55% is achieved for the velocity error, which is enabled by the direct
velocity measurement of the radar. This effect also helps determining whether an
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Table 2: Experimental results for our radar-camera fusion used in different architectures
on the nuScenes val split. The inference latency T is measured on a Nvidia RTX 2080
Ti. *We use the implementation of BEVDet-Tiny with a heavier view transformer
from [22]. †We list the results as reported by the authors.

Cam. model Radar model mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ T [ms]
[10] BEVDet* None 0.350 0.411 0.660 0.275 0.532 0.918 0.260 122

Ours BEVDet* RadarGridMap 0.429 0.525 0.523 0.272 0.507 0.412 0.183 132
∆r 23% 28% -21% -1% -5% -55% -30%

Ours BEVDet* BEVFeatureNet 0.434 0.525 0.511 0.270 0.527 0.421 0.182 139
∆r 24% 28% -23% -2% -1% -54% -30%

[18]† BEVDepth None 0.359 0.480 0.612 0.269 0.507 0.409 0.201 132

Ours BEVDepth BEVFeatureNet 0.405 0.521 0.542 0.274 0.512 0.309 0.181 146
∆r 13% 9% -11% 2% 1% -24% -10%

[17]† BEVStereo None 0.372 0.500 0.598 0.270 0.438 0.367 0.190 308

Ours BEVStereo BEVFeatureNet 0.423 0.545 0.504 0.268 0.453 0.270 0.174 322
∆r 14% 9% -16% -1% 3% -26% -8%

[56] MatrixVT None 0.319 0.400 0.669 0.281 0.494 0.912 0.238 54

Ours MatrixVT BEVFeatureNet 0.386 0.495 0.549 0.275 0.539 0.423 0.193 64
∆r 21% 24% -18% -2% 9% -54% -19%

Table 3: Experimental results for published radar-camera fusion models on the nuScenes
test benchmark.

Model mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
CenterFusion [31] 0.326 0.449 0.631 0.261 0.516 0.614 0.115
CRAFT [14] 0.411 0.523 0.467 0.268 0.456 0.519 0.114
TransCAR [35] 0.422 0.522 0.630 0.260 0.383 0.495 0.121
Ours (BEVDet) 0.476 0.567 0.444 0.244 0.461 0.439 0.128

object is currently moving or stopped, thus reducing the attribute error. The two
metrics that remain relatively unaffected by the fusion are scale and orientation
error. This is as expected since the sparse radar detections do not help to deter-
mine an object’s size or orientation. Overall, we observe similar results for the
RadarGridMap and the BEVFeatureNet encoder. This demonstrates the effec-
tiveness and modularity of the proposed BEV-based feature fusion. In general,
we recommend using the BEVFeatureNet because it requires less hand-crafted
input, is more scalable, and achieves slightly better results.

In the second part of Table 2, we use the BEVFeatureNet encoder as a plug-
in branch in different camera-only baselines. We observe significant performance
increase for all examined architectures, again confirming the modularity of the
proposed architecture. There are two potential reasons for the difference in rela-
tive performance increase between the camera-only baselines. First, BEVDepth
and BEVStereo use temporal fusion and therefore achieve better velocity predic-
tion and overall scores, leading to smaller margins for the radar-camera fusion.
Second, we use a BEVDet variant with a heavier view transformer especially de-
signed for fusion on the BEV space. This modification may explain the relatively
high performance gains.

Finally, we also measure the inference latency on an Nvidia RTX 2080 Ti
GPU to demonstrate that our fusion approach introduces only small computa-
tional overhead due to the efficient radar encoder design.
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(a) BEVDet (b) Proposed RC-BEVFusion

Fig. 3: Inference example at daytime. Predicted 3D bounding boxes projected to all six
cameras (top) and BEV plane (bottom) with LiDAR points (black) and radar points
(red) for reference. Our proposed fusion network more accurately detects pedestrians
and vehicles (s. dashed red ellipses).

NuScenes test results For the nuScenes test benchmark, we show our results
compared to other published radar-camera fusion models in Table 3. We note
that many methods tune their models for the benchmark submission by enlarg-
ing their network and the input image resolution and by using test time aug-
mentation. All of these techniques trade off smaller performance gains for large
computational cost and are therefore not helpful in an automotive application in
which fast decisions are required. For instance, the authors of BEVDet achieve
15.6 frames per second with the tiny configuration similar to ours, while the base
configuration used for the benchmark achieves only 1.9 frames per second [10].
We therefore combat this trend and only retrain our model with scenes from
the training and validation set for the test submission. As shown in Table 3, our
proposed RC-BEVFusion with BEVFeatureNet and BEVDet significantly out-
performs previously published radar-camera fusion networks in all metrics except
the orientation error, even without tuning for the benchmark, while achieving
7.2 frames per second. A key advantage of our architecture compared to existing
methods [14,31,35], is that radar and camera features can equally contribute to
the final detections, allowing the model to detect objects that might be missed
by each single modality.
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4.3 Qualitative Evaluation

To get a better impression of the difference in object detection performance,
we present an inference example for BEVDet [10] and RC-BEVFusion based on
BEVFeatureNet and BEVDet in Figure 3. We show the camera-only inference
results and radar-camera fusion results in the left and right subfigure, respec-
tively. We show the full surround view with all six cameras, the top row shows
the front left, center and right camera, while the bottom row shows the back
right, center and left camera. On the bottom, we show a BEV perspective with
LiDAR points in black for reference and radar points in red for the fusion network
only. In each perspective, we show the projected 3D bounding boxes predicted
by the networks, where the color indicates the class: pedestrians are blue, cars
are yellow and trucks are orange.

In the scene, we see a crowded intersection with lots of cars and pedestrians.
At first, the visual impression when looking at the camera images is that most
objects are well detected. However, comparing the dashed red ellipses in the BEV
perspective on the right, we can see that the radar-camera fusion enables much
more accurate detection of the pedestrians in the front and back right area, as
well as the cars in the front left, front right and back area.

5 Conclusion

In this work, we have presented a novel radar-camera fusion architecture on
the BEV plane. We propose two radar encoders and show that they can be
integrated into several camera-based architectures that use BEV features. In
our experiments, the proposed radar-camera fusion outperforms the camera-only
baselines by a large margin, demonstrating its effectiveness. Without tuning
the model for the test submission to avoid unrealistic computational cost, we
outperform previously published radar-camera fusion networks. Our qualitative
evaluation shows improved localization accuracy at daytime and higher recall
at nighttime. In future work, we want to study the potential of BEV-based
radar-camera fusion with the high-resolution, 3+1D radar sensors appearing in
recently introduced datasets.
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