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Abstract. Computer vision research and popular datasets are predom-
inantly based on the RGB modality. However, traditional RGB datasets
have limitations in lighting conditions and raise privacy concerns. Inte-
grating or substituting with thermal and depth data offers a more ro-
bust and privacy-preserving alternative. We present TRISTAR1, a public
TRImodal Segmentation and acTion ARchive comprising registered se-
quences of RGB, depth, and thermal data. The dataset encompasses 10
unique environments, 18 camera angles, 101 shots, and 15,618 frames
which include human masks for semantic segmentation and dense labels
for temporal action detection and scene understanding. We discuss the
system setup, including sensor configuration and calibration, as well as
the process of generating ground truth annotations. On top, we con-
duct a quality analysis of our proposed dataset and provide benchmark
models as reference points for human segmentation and action detection.
By employing only modalities of thermal and depth, these models yield
improvements in both human segmentation and action detection.

Keywords: segmentation · temporal action segmentation/detection ·
scene understanding · video understanding

1 Introduction

RGB data is one of the most commonly used modalities for computer vision
datasets [25, 18]. However, this modality has a number of notable shortcom-
ings. Firstly, RGB sensors are sensitive to lighting conditions, and their image
quality can be compromised under non-optimal conditions. Secondly, the RGB
modality can lead to the identification of individuals, posing potential privacy
concerns in sensitive applications. Lastly, segmentation accuracy may suffer due
to inadequate camera quality and intensity similarities between the foreground
and background.

Integrating various modalities offers a more comprehensive and detailed scene
representation: color modalities provide contour and texture details, depth data
1 https://zenodo.org/record/7996570, https://github.com/Stippler/tristar
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shows the scene geometry, and thermal imaging contributes temperature infor-
mation.

This paper presents a unique trimodal dataset designed to address the limi-
tations of existing single-modality datasets in semantic segmentation and action
recognition. Our dataset comprises 101 registered sequences of RGB, thermal,
and depth shots, captured in diverse office scenarios. The key dataset character-
istics are listed in Table 1.

Table 1: Details of the Trimodal Dataset.
Content Indoor Human Behavior
Modalities Registered RGB, Depth, Thermal
Type of Data Sequences
Resolution 640x480
Frame Rate 8.7 fps
#Offices 10
#Camera Angles 18
#Shots 101
#Frames 15,618
#Individuals 8
#Actions 14

Figure 1, shows samples of our trimodal dataset where we employ the reg-
istration methodology outlined by Stromayer et al. [31] to align the different
modalities.

Fig. 1: Examples from our trimodal dataset, encompassing RGB, depth, thermal
imaging, and human segmentation mask.
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The second row emphasizes a potential limitation of relying solely on the
RGB modality: the similar RGB intensities in the foreground and background
make it challenging to precisely distinguish the person from the couch.

Our key contributions include a novel trimodal dataset consisting of varying
office settings, that provides a resource for researchers focusing on multi-modal
data fusion and related tasks, combined with human segmentation maps to aid
with the task of, semantic segmentation, action labels that describe a wide range
of activities, enabling the development and evaluation of temporal action detec-
tion models.

In addition, we train benchmark models on the task of human segmentation
and action recognition and provide them as baselines for further research. These
baselines demonstrate the effectiveness of complementing or replacing RGB with
depth and thermal modalities.

The selection of segmentation and temporal action segmentation as our pri-
mary downstream tasks is based on several considerations. First, these tasks
represent diverse levels of complexity, allowing us to demonstrate the utility of
our trimodal dataset across a wide array of challenges. Second, both tasks have
substantial real-world applicability, encompassing use-cases from autonomous
driving to assistive technologies, underscoring the practicality of our research.
Third, they particularly benefit from multimodal data, with depth and thermal
information enhancing performance by offering structural context and distin-
guishing capabilities. Finally, as these tasks are commonly used for benchmark-
ing in computer vision, they enable a direct and meaningful comparison of our
work against existing methodologies and datasets.

The remainder of this paper is structured as follows: Section 2 presents a
review of existing datasets and their limitations; Section 3 provides an overview
of the system setup, including sensor configuration and calibration; Section 4
details the construction, analysis, and evaluation of our trimodal dataset; Sec-
tion 5 outlines potential tasks and applications that benefit from the dataset;
and Section 6 concludes the paper and discusses possible future work.

2 Related Work

Our efforts to build a trimodal dataset are based on an understanding of the
existing literature on datasets, their limitations, and current methodologies em-
ployed for multimodal datasets. To provide a broader context for our work, we
now delve into a review of existing datasets and their accompanying methodolo-
gies.

2.1 Datasets

Some notable examples of datasets for semantic segmentation and action recog-
nition include PASCAL VOC [8], COCO [18], ADE20K [36], and the Charades
dataset [28]. While these datasets played a vital role in advancing semantic seg-
mentation research and action classification, they primarily focus on RGB data
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and lack the inclusion of additional modalities such as thermal and depth infor-
mation.

Depth datasets provide information about scene geometry and can be used
in a various domains, such as 3D reconstruction and scene understanding. Ex-
amples of outdoor depth datasets include KITTI [10] and Cityscapes [3], while
the NYU Depth [30] dataset is a prominent example of an indoor depth dataset.
Furthermore, IPT [13] is a depth dataset for tracking tasks in enclosed environ-
ments. Although these datasets provide depth information, they do not include
thermal data, which can be crucial for addressing challenges posed by vary-
ing lighting conditions and ensuring privacy preservation. The follow-up MIPT
dataset also includes a small number of depth and thermal sequences, but lacks
RGB data [12].

Thermal imaging is acknowledged for its potential in a variety of computer
vision tasks [12, 13, 17]. Unlike traditional RGB imaging, thermal imaging is less
susceptible to illumination changes and provides additional information about
the subject. Thermal data provides information of the temperature distribution,
which proves particularly useful in scenarios with bad lightning and semantic
segmentation of living objects. Several thermal image datasets have been in-
troduced to promote research in this domain. One noteworthy example is the
OSU Thermal Pedestrian Dataset [5], which includes a substantial number of
pedestrian thermal images collected under different environmental conditions.
However, this dataset is primarily used for pedestrian detection tasks rather
than segmentation or action recognition. Another dataset, the Terravic Facial
Infrared Database [21], contains both visible and thermal facial images. Kniaz
et al. propose Thermagan for person re-identification and publish their dataset
ThermalWorld alongside it [17]. Heitzinger et al. introduce an identity-preserving
3D human behavior analysis system that addresses privacy concerns in continu-
ous video monitoring. They also release a public multimodal dataset composed of
depth and thermal sequences, intended to support a variety of privacy-sensitive
applications in ambient-assisted living and human security monitoring [12]. Bren-
ner et al.’s survey [1] provides a systematic literature review of the fusion of
RGB-D and thermal sensor data, highlighting the progress made in this area
over the past decade. The PST900 dataset [27] is one resource that proposes long
wave infrared (LWIR) imagery as a supporting modality for semantic segmen-
tation using learning-based techniques. This dataset provides 894 synchronized
and calibrated RGB and thermal image pairs with per-pixel human annotations
across four distinct classes. In addition to presenting a unique dataset, the au-
thors introduce a novel passive calibration target. Another notable resource is
the InfAR action dataset [9], which focuses on action recognition using infrared
data.

To the best of our knowledge, only a single dataset exists that combines RGB,
thermal, and depth data [22] for human segmentation. This dataset consists of
5,274 frames recorded in three shots in three distinct office scenes.

Given the scarcity and potential benefits of trimodal data, we motivate the
creation of our dataset; we provide 101 different shots recorded in 10 offices
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from 18 unique camera angles to provied a resource for researchers working on
multi-modal data fusion and related tasks.

2.2 Methods

One of the earliest methods for human segmentation is the Histogram of Oriented
Gradients (HOG) descriptor combined with a Support Vector Machine (SVM)
for human detection, introduced by Dalal and Triggs [4]. However, this approach
struggles with occlusions and variations in human appearance. To overcome these
challenges, more recent works have leveraged the power of deep learning. Mask
R-CNN, proposed by He et al. [11], extends Faster R-CNN [23] by adding a
branch for predicting an object mask in parallel with the existing branch for
bounding box recognition. DeepLabv3+ [2] is another method that employs an
encoder-decoder structure with dilated convolutions and spatial pyramid pool-
ing for semantic segmentation. Recent methods for segmentation have moved
towards leveraging attention mechanisms and transformers, leading to the devel-
opment of architectures such as Self-Attention Generative Adversarial Networks
(SAGANs) [35], and Vision Transformers (ViTs) [7]. One particularly notable
method is the Swin Transformer [19], which introduces a hierarchical structure
with shifted windows to enable efficient self-attention over images. Finally, Seg-
ment Anything (SAM) paves the way for generalizable zero-shot segmentation
that can be applied to RGB, thermal, or depth modalities [16]. These methods
have primarily been developed and evaluated using RGB data. Their effective-
ness with depth or thermal data is less explored, likely due to the scarcity of
multimodal datasets that inclued these modalities.

In the domain of action recognition and classification long-term Recurrent
Convolutional Networks (LRCNs) [6], 3D Convolutional Neural Networks (3D-
CNNs) [14] and transformer-based approaches such as the Video Swin Trans-
former [20] are among the notable methods. These models primarily rely on
RGB data, however, the exploration of action recognition in multimodal datasets
combining RGB, depth, and thermal data is relatively limited, primarily due to
the scarcity of such datasets. Although there are a few existing works like NTU
RGB+D [26] that incorporate depth information, their ability to handle thermal
data is limited.

In summary, while existing datasets and methods have significantly advanced
semantic segmentation and action recognition, they predominantly focus on RGB
data. The limited availability of multimodal datasets, particularly those combin-
ing RGB, thermal, and depth data, limits exploration into the potential benefits
of these modalities.

3 System Overview

In light of the scarcity of RGB, depth and thermal datasets identified in the
prior literature, we designed and implemented a system to capture and annotate
data across these three modalities. This system includes a Compact Tri-Modal
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Camera Unit (CTCAT) for data acquisition and implements a streamlined an-
notation process for data labeling [31]. Our approach is inherently scalable and
capable of distributed operation, leveraging the novel zero-shot model Segment
Anything [16] for effective object recognition and employing a distributed label-
ing system that allows for efficient, large-scale annotation tasks [32]. Annotators
perform labeling on the RGB modality. However, to improve the accuracy of
the labeling process, they are provided access to the corresponding thermal and
depth data. These additional data are mapped to RGB using a color scale, as
illustrated in Figure 1.

3.1 Sensor Setup

We utilize the Compact Tri-Modal Camera Unit (CTCAT) described by Stroh-
mayer et al. [31]. The CTCAT combines three types of cameras: RGB, a struc-
tured light depth camera with an operational range of 0.6-8m, and a 160x120
uncooled radiometric thermal camera which allows us to capture across all three
modalities at a rate of up to 8.7 fps. Although each camera has its unique res-
olution, we rescale all images to a standardized resolution of 640x480 pixels for
consistency within the dataset. To align the RGB, thermal, and depth cameras,
a custom-made, heated checkerboard calibration pattern is used.

Figure 2 illustrates our camera setup, a close-up view of the CTCAT unit
and a sample trimodal shot, capturing the scene’s diverse modalities. Mounted
on a tripod, the camera and its accompanying portable monitor are powered
by an affixed battery pack. Typically positioned on tables or countertops at a
height between two and three meters, the setup allows for comprehensive capture
of office scenes. Before recording, we optimize the camera perspective using the
narrow field of view of the thermal sensor. Individuals are then filmed performing
various actions, guided by instructions provided by a designated person. The
action list includes tasks like picking up a glass, drinking, and typing.

Fig. 2: The camera setup with the CTCAT unit and the captured scene.



A Trimodal Dataset for Human Segmentation and Action Detection 7

3.2 Ground Truth Generation

We employ pretrained YoloV7 and YoloV8 models [34], [15] to detect bounding
boxes of humans based on the RGB modality of our trimodal dataset. These
bounding boxes serve as input for the Segment Anything tool [16], allowing
us to obtain preliminary human masks. The initial results obtained from Seg-
ment Anything form the foundation for the manual labeling process. A team of
twelve annotators undertakes the task of labeling a total of 15,618 frames on
the RGB modality. The generated masks are also used for the corresponding
depth and thermal frames. While the labeling takes place directly on the RGB
modality, the annotators are also provided access to the corresponding thermal
and depth modalities, registered and color mapped, to use as reference in cases
where the person is not clearly distinguishable from the background. To facilitate
this large-scale task, we utilize a self-hosted Label Studio instance [32] which al-
lows multiple annotators to work simultaneously. Figure 3 illustrates the human
segmentation annotation process using Label Studio.

Fig. 3: Illustration of the manual human segmentation annotation process using
Label Studio.

Action labeling is conducted with dense per-frame labeling of 14 classes, cat-
egorized into actions, states, transitions between states, and location of the per-
son on the RGB modality. The labeling process is performed using a spreadsheet
with the columns: original file name, person, shot, frame, actions, transitions,
state, and location. If multiple labels were applicable within a single column,
they are delimited with a space. The objective for this task is temporal action
segmentation or action detection, which entails identifying the specific actions
occurring within a given frame.
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4 Trimodal Dataset

Building upon the groundwork laid out in the sensor setup, we now present
our own multimodal dataset. Our dataset encompasses an array of office scenes
recorded using a trimodal sensor arrangement integrating RGB, thermal, and
depth data.

4.1 Dataset Design

In order to construct our multimodal dataset, we drew inspiration from notable
contributions in the field. The Charades Dataset [29], shows humans in indoor
environments and is densely labeled with activities. Meanwhile, the work of
Palmero et al. [22] highlights the potential of multimodal datasets, albeit with
a more limited scope and volume of data.

For our dataset we select an office environment, as it provides a variety of sce-
narios, activities, and lighting conditions. The selection of action labels is based
on their occurrences in a real office setting. Table 2 presents a comprehensive
list of the various actions, states, transitions, and locations that are represented
in our dataset.

Table 2: List of Actions, States, Transitions, and Locations used for Labeling.
Label Items

Action Classification put_down, pick_up, drink, type, wave
State sit, walk, stand, lie
Transitions get_down, get_up
Location out_of_view, out_of_room, in_room

Furthermore, our dataset includes different types of office spaces, namely
open office environments, meeting rooms, and individual offices, each offering
a different layout and set of interactions with surrounding objects. Figure 4
illustrates the variety of office locations and lighting conditions covered in our
dataset.

Fig. 4: Variety of office locations and lighting conditions in the dataset.
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Lighting conditions, a crucial factor in visual data, are also varied in our
dataset ranging from bright daylight, and artificial lighting, to low-light condi-
tions. Finally, our dataset encompasses object classes commonly found in office
environments ranging from office furniture such as desks, chairs, and cabinets to
electronic devices like computers, and phones, as well as various personal items.

4.2 Dataset Analysis

Our dataset comprises 15,618 annotated frames, recorded from 18 unique camera
angles. It documents the actions of eight individuals within various office settings,
as highlighted by the distribution in Figure 5.

Person 4
Person 2

Person 6
Person 5

Person 3
Person 1

Person 7
Person 8
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2000

4000
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m

es

Person Distribution

Fig. 5: Distribution of individuals in our dataset.

The action labels captured in our dataset showcase a diverse range of office
activities. Actions such as type, wave, drink, pick_up, and put_down appear
1,420, 1,276, 1,129, 821, and 710 times, respectively as shown by Figure 6a. In
terms of states, labels such as walk, sit, stand, and lie are featured 4,855,
4,065, 4,036, and 578 times, respectively. Transition labels, namely get_down
and get_up, occur 821 and 770 times, respectively. The states and transitions
happen exclusively and their distribution is shown in Figure 6b.
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(a) Distribution of actions.
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(b) Distribution of states and transitions.

Fig. 6: Distributions of actions, states, and transitions in our dataset.
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Finally, location labels in_room, out_of_view, and out_of_room are marked
in 14,211, 1,163, and 234 instances, respectively.

Considering human segmentation, our dataset includes approximately 14,000
instances where humans are segmented within the frames. These instances, cap-
tured under varying scenes and lighting conditions, provide a dataset for human
segmentation.

4.3 Dataset Quality Evaluation

To assess the consistency of the human segmentation labeling process in our
dataset, 1106 frames are annotated twice. The quality of the labels is quantified
through the calculation of the Jaccardian Index, which measures the overlap
between two sets. The average Jaccardian Index is found to be 0.948, indicating
a high level of consistency between the different labelers. A further investigate
of the frames with the 20 lowest Jaccard Indices, reveals two sources of errors.
The first case, as depicted in Figure 7a, occurs when the labeled area is very
small. This typically happens when the person is far away from the camera or
mostly occluded. The second case, as shown in Figure 7b, arises from suboptimal
labeling quality.

(a) First case: small labeled area due
to a person leaving the room.

(b) Second case: discrepancy
due to sloppy labeling.

Fig. 7: Visualization of RGB, thermal modality, and human segmentation masks.
Violet, indicates an overlap between the two annotator’s labels. Red and blue
regions, signify areas of disagreement.

For labels, we compute the label agreement by comparing the labels given in
both versions for the same frames. A match is considered when the same set of
labels for a frame are provided, irrespective of the sequence. The results indicate
a strong agreement for actions (92.4%), transitions (98.0%), states (94.7%), and
locations (99.1%), confirming the robustness of our labeling process.
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Figure 8 presents a confusion matrix for state transitions, providing insights
into the instances where discrepancies occurred between the two labels. Of par-
ticular interest are the transitions from the get_down state to either the walk
or stand states. These transitions often cause confusion due to the difficulty in
pinpointing the exact moment when an individual begins to sit down. As the
process of transitioning from a standing to a sitting or lying position is relatively
brief, it results in a higher degree of error.

stand walk sit get_down get_up lay

stand

walk

sit

get_down

get_up

lay

0.93 0.06 0.00 0.00 0.00 0.00

0.05 0.95 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.10 0.13 0.00 0.77 0.00 0.00

0.00 0.00 0.05 0.00 0.95 0.00

0.00 0.00 0.00 0.02 0.01 0.97

Normalized Confusion Matrix for Transitions and States

0.0

0.2

0.4

0.6

0.8

Fig. 8: Confusion matrix for state transitions in our double-labeled dataset.

5 Benchmarking

In our evaluation, we train a UNet and DeepLabV3 for human segmentation and
an action detection model. To enable comparisons across different modalities, we
employ z-normalization based on each modality’s training set mean and variance.
We adjust the size of each model’s input channels and concatenate the normalized
frames as per the combination of modalities in use. For example, combining
depth and thermal data results in an input channel size of two, while employing
all modalities increases the input channel size to five. These adjustments aim
to assess the performance and impact of individual and combined modalities in
multimodal learning tasks.

5.1 Split

The benchmark performance of models trained on our dataset requires a train-
ing, validation, and test split. The structure of this split is on the shot level
rather than the frame level. This ensures that every frame within a shot is as-
signed exclusively to a single set (training, validation, or test set). Additionally,
the selection of shots minimizes the overlaps in terms of offices and subjects
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within training, validation, and test shots to prevent information leakage. The
distribution the training, validation, and test sets, encompasses 63.77%, 18.23%,
and 18.00% of the total data. This corresponds to 9,959 frames in the training
set, 2,848 frames in the validation set, and 2,811 frames in the test set.

5.2 Human Segmentation

For the human segmentation task, we adopt the UNet [24] and DeepLabv3 [2]
architectures, fine-tuning a model pretrained on the COCO dataset [18] for our
trimodal data. We implement an early fusion technique, normalizing the input
frames from each modality to a standard distribution via z-normalization, and
then concatenating the respective modalities to form the multimodal input. To
accommodate these inputs, the DeepLabv3 model-originally designed for RGB
inputs-has an input channel added for thermal and depth modalities. When in-
cluding the RGB modality, we copy the original RGB weights to the new input
layer. Following this, the model undergoes ten epochs of training with a learn-
ing rate of 0.0001. The model yielding the lowest validation loss during this
process is selected for testing. Interestingly, as revealed by Tables 3a and 3b,
the best performing combination—yielding the highest Intersection over Union
(IoU)—excludes the RGB modality. This finding underscores the value of ther-
mal modality in achieving clear human visibility, especially in test scenes with
RGB clutter.

Table 3: Results for Segmentation using UNet and DeepLabv3 on the test set.
The input layers channel are updated to accommodate the concatenation of the
models.

(a) Results for UNet.

RGB Depth Thermal Loss IoU
– – ✓ 0.040 0.659
– ✓ – 0.055 0.580
– ✓ ✓ 0.020 0.775
✓ – – 0.147 0.356
✓ – ✓ 0.062 0.673
✓ ✓ – 0.071 0.553
✓ ✓ ✓ 0.025 0.726

(b) Results for DeepLabv3.

RGB Depth Thermal Loss IoU
– – ✓ 0.041 0.660
– ✓ – 0.045 0.622
– ✓ ✓ 0.023 0.806
✓ – – 0.050 0.586
✓ – ✓ 0.041 0.670
✓ ✓ – 0.086 0.494
✓ ✓ ✓ 0.048 0.619

5.3 Action Detection

Our approach for temporal action detection builds upon the method presented
in [33]. We employ the same early fusion technique as in the segmentation task
to fuse the multimodal inputs. The model is initialized with random weights. Its
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input is a set of eight frames at a time: the first seven frames serve as temporal
context, and the eighth frame is the prediction target. The model architecture
includes four 3D convolution pooling blocks with ReLU for feature extraction,
global average pooling, and two Multi Layer Perceptrons (MLPs) for classifi-
cation. One MLP classifier with softmax and cross-entropy loss is utilized for
mutually exclusive state, transition, and location labels. The second MLP with
sigmoid and binary cross-entropy loss is employed for action labels, account-
ing for the possibility of simultaneous actions. As demonstrated in Table 4, the
combination of depth and thermal modalities yields the highest performance for
action classification. This finding underlines the results from the segmentation
tasks, reinforcing the advantages of utilizing non-RGB modalities, particularly
in complex scenes, for robust action recognition.

Table 4: Results for Temporal Action Detection using custom 3D Convolution
Architecture on the test set.

RGB Depth Thermal Loss Accuracy Precision Recall
– – ✓ 2.367 0.903 0.796 0.620
– ✓ – 2.504 0.889 0.749 0.577
– ✓ ✓ 2.347 0.907 0.813 0.626
✓ – – 2.659 0.876 0.704 0.537
✓ – ✓ 2.346 0.904 0.799 0.623
✓ ✓ – 2.465 0.897 0.758 0.629
✓ ✓ ✓ 2.349 0.901 0.783 0.618

6 Conclusion

In this work, we have introduced a novel trimodal dataset that combines RGB,
thermal, and depth data captured in diverse office environments. One finding
from our experiments is the superior performance achieved by utilizing the depth
and thermal modalities, even surpassing the combination of RGB, depth, and
thermal data. This finding underlines the role that these less traditionally utilized
modalities can play in enhancing the robustness and performance of machine
learning models, particularly in environments with varying lighting conditions.
Future research could exploit the temporal characteristics of our dataset. While
UNet and DeepLabV3 architectures mainly focus on spatial features, incorpo-
rating temporal information could provide a richer context for the segmentation
task. Leveraging Transformer models, which have demonstrated capability of
capturing temporal dependencies in data, could also be considered.

Acknowledgments

This work was partly supported by the Austrian Research Promotion Agency
(FFG) under the Grant Agreement No. 879744.



Bibliography

[1] Brenner, M., Reyes, N.H., Susnjak, T., Barczak, A.L.: Rgb-d and
thermal sensor fusion: A systematic literature review. arXiv preprint
arXiv:2305.11427 (2023)

[2] Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-
decoder with atrous separable convolution for semantic image segmentation.
In: Proceedings of the European conference on computer vision (ECCV).
pp. 801–818 (2018)

[3] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson,
R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for seman-
tic urban scene understanding. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3213–3223 (2016)

[4] Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection.
In: 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05). vol. 1, pp. 886–893. Ieee (2005)

[5] Davis, J., Keck, M.: A two-stage approach to person detectionin thermal
imagery. In: Proceeding of Workshop on Applications of Computer Vision
(WACV) (2005)

[6] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venu-
gopalan, S., Saenko, K., Darrell, T.: Long-term recurrent convolutional
networks for visual recognition and description. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 2625–
2634 (2015)

[7] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An
image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929 (2020)

[8] Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.:
The pascal visual object classes (voc) challenge. International journal of
computer vision 88, 303–338 (2010)

[9] Gao, C., Du, Y., Liu, J., Lv, J., Yang, L., Meng, D., Hauptmann, A.G.: Infar
dataset: Infrared action recognition at different times. Neurocomputing 212,
36–47 (2016)

[10] Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving?
the kitti vision benchmark suite. In: 2012 IEEE conference on computer
vision and pattern recognition. pp. 3354–3361. IEEE (2012)

[11] He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings
of the IEEE international conference on computer vision. pp. 2961–2969
(2017)

[12] Heitzinger, T., Kampel, M.: A foundation for 3d human behavior detection
in privacy-sensitive domains. In: 32nd British Machine Vision Conference
2021, BMVC 2021, Online, November 22-25, 2021. p. 305. BMVA Press



A Trimodal Dataset for Human Segmentation and Action Detection 15

(2021), https://www.bmvc2021-virtualconference.com/assets/papers/1254.
pdf

[13] Heitzinger, T., Kampel, M.: Ipt: A dataset for identity preserved track-
ing in closed domains. In: 2020 25th International Conference on Pattern
Recognition (ICPR). pp. 8228–8234. IEEE (2021)

[14] Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for hu-
man action recognition. IEEE transactions on pattern analysis and machine
intelligence 35(1), 221–231 (2012)

[15] Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (Jan 2023), https:
//github.com/ultralytics/ultralytics

[16] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L.,
Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything.
arXiv preprint arXiv:2304.02643 (2023)

[17] Kniaz, V.V., Knyaz, V.A., Hladuvka, J., Kropatsch, W.G., Mizginov, V.:
Thermalgan: Multimodal color-to-thermal image translation for person re-
identification in multispectral dataset. In: Proceedings of the European Con-
ference on Computer Vision (ECCV) Workshops. pp. 606–624 (2018)

[18] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dol-
lár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Com-
puter Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

[19] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.:
Swin transformer: Hierarchical vision transformer using shifted windows.
In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 10012–10022 (2021)

[20] Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin
transformer. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 3202–3211 (2022)

[21] Miezianko, R.: Terravic research infrared database. IEEE OTCBVS WS
Series Bench (2005)

[22] Palmero, C., Clapés, A., Bahnsen, C., Møgelmose, A., Moeslund, T.B., Es-
calera, S.: Multi-modal rgb–depth–thermal human body segmentation. In-
ternational Journal of Computer Vision 118, 217–239 (2016)

[23] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information
processing systems 28 (2015)

[24] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical
image computing and computer-assisted intervention. pp. 234–241. Springer
(2015)

[25] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale
visual recognition challenge. International journal of computer vision 115,
211–252 (2015)

[26] Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+ d: A large scale
dataset for 3d human activity analysis. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 1010–1019 (2016)

https://www.bmvc2021-virtualconference.com/assets/papers/1254.pdf
https://www.bmvc2021-virtualconference.com/assets/papers/1254.pdf
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


16 C. Stippel et al.

[27] Shivakumar, S.S., Rodrigues, N., Zhou, A., Miller, I.D., Kumar, V., Taylor,
C.J.: Pst900: Rgb-thermal calibration, dataset and segmentation network.
In: 2020 IEEE international conference on robotics and automation (ICRA).
pp. 9441–9447. IEEE (2020)

[28] Sigurdsson, G.A., Divvala, S., Farhadi, A., Gupta, A.: Asynchronous tem-
poral fields for action recognition. In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR). pp. 585–594 (2017)

[29] Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.:
Hollywood in homes: Crowdsourcing data collection for activity understand-
ing. In: Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. pp.
510–526. Springer (2016)

[30] Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and
support inference from rgbd images. ECCV (5) 7576, 746–760 (2012)

[31] Strohmayer, J., Kampel, M.: A compact tri-modal camera unit for rgbdt
vision. In: 2022 the 5th International Conference on Machine Vision and
Applications (ICMVA). pp. 34–42 (2022)

[32] Tkachenko, M., Malyuk, M., Holmanyuk, A., Liubimov, N.: Label Stu-
dio: Data labeling software (2020-2022), https://github.com/heartexlabs/
label-studio

[33] Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spa-
tiotemporal features with 3d convolutional networks. In: Proceedings of the
IEEE international conference on computer vision. pp. 4489–4497 (2015)

[34] Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 7464–7475 (2023)

[35] Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative
adversarial networks. In: International conference on machine learning. pp.
7354–7363. PMLR (2019)

[36] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene
parsing through ade20k dataset. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 633–641 (2017)

https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio

	A Trimodal Dataset: RGB, Thermal, and Depth for Human Segmentation and Temporal Action Detection

