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Abstract. Recent advances in probabilistic deep learning enable efficient
amortized Bayesian inference in settings where the likelihood function is
only implicitly defined by a simulation program (simulation-based infer-
ence; SBI). But how faithful is such inference if the simulation represents
reality somewhat inaccurately—that is, if the true system behavior at
test time deviates from the one seen during training? We conceptualize
the types of model misspecification arising in SBI and systematically
investigate how the performance of neural posterior approximators grad-
ually deteriorates under these misspecifications, making inference results
less and less trustworthy. To notify users about this problem, we propose
a new misspecification measure that can be trained in an unsupervised
fashion (i.e., without training data from the true distribution) and reli-
ably detects model misspecification at test time. Our experiments clearly
demonstrate the utility of our new measure both on toy examples with
an analytical ground-truth and on representative scientific tasks in cell
biology, cognitive decision making, and disease outbreak dynamics. We
show how the proposed misspecification test warns users about suspicious
outputs, raises an alarm when predictions are not trustworthy, and guides
model designers in their search for better simulators.
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1 Introduction

Computer simulations play a fundamental role in many fields of science. However,
the associated inverse problems of finding simulation parameters that accurately
reproduce or predict real-world behavior are generally difficult and analytically
intractable. Here, we consider simulation-based inference (SBI) [9] as a general
approach to overcome this difficulty within a Bayesian inference framework. That
is, given an assumed generative model M (as represented by the simulation
program, see Section for details) and observations x (real or simulated
outcomes), we estimate the posterior distribution p(€|x, M) of the simulation
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Fig. 1: Conceptual overview of our neural approach. The summary network h.
maps observations & to summary statistics hy (x), and the inference network f,
estimates the posterior p(0|x, M) from the summary statistics. The generative
model M creates training data « in the green region, and the networks learn
to map these data to well-defined summary statistics and posteriors (green re-
gions/dot/box). If the generative model M is misspecificed, real observations &
fall outside the training region and are therefore mapped to outlying summary
statistics and potentially incorrect posteriors (red dots/box). Since our learning
approach enforces a known inlier summary distribution (e.g., Gaussian), mis-
specification can be detected by a distribution mismatch in summary space, as
signaled by a high maximum mean discrepancy [22] score.

parameters @ that would reproduce the observed x. The recent introduction of
efficient neural network approximators for this task has inspired a rapidly growing
literature on SBI solutions for various application domains [6I33/20048|429/18].
These empirical successes call for a systematic investigation of the trustworthiness
of SBI, see

We conduct an extensive analysis of neural posterior estimation (NPE) and
sequential neural posterior estimation (SNPE), two deep learning algorithms to
approximate the posterior distribution p(@|x, M). In particular, we study their
accuracy under model misspecification, where the generative model M™* at test
time (the “true data generating process”) deviates from the one assumed during
training (i.e., M* £ M), a situation commonly known as simulation gap. As a
consequence of a simulation gap, the observed data of interest might lie outside
of the simulated data from the training phase of SBI. Paralleling the notion of
“out-of-distribution” in anomaly detection and representation learning, simulation
gaps may lead to “out-of-simulation” samples, and ultimately to wrong posterior
estimates.

In this work, we propose a new misspecification measure that can be trained
in an unsupervised fashion (i.e., without knowledge of M* or training data from
the true data distribution) and reliably quantifies by how much M* deviates
from M at test time. Our experiments clearly demonstrate the power of our
new measure both on toy examples with an analytical ground-truth, and on
representative scientific tasks in cell biology, cognitive decision making, and disease
outbreak dynamics. We show how simulation-based posterior inference gradually
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deteriorates as the simulation gap widens and how the proposed misspecification
test warns users about suspicious outputs, raises an alarm when predictions are
not trustworthy, and guides model designers in their search for better simulators.
Thus, our investigations complement existing work on deep amortized SBI, whose
main focus has been on network architectures and training algorithms for high
accuracy in the well-specified case M* = M [46I38TA452TI35/41]. In particular,
our paper makes the following key contributions:

(i) We systematically conceptualize different sources of model misspecification
in amortized Bayesian inference with neural networks and propose a new
detection criterion that is widely applicable to different model structures,
inputs, and outputs.

(ii) We incorporate this criterion into existing neural posterior estimation meth-
ods, with hand-crafted and learned summary statistics, with sequential or
amortized inference regimes, and we extend the associated learning algorithms
in a largely non-intrusive manner.

(iii) We conduct a systematic empirical evaluation of our detection criterion, the
influence of the summary space dimension, and the relationship between
summary outliers and posterior distortion under various types and strengths
of model misspecification.

2 Related Work

Model misspecification has been studied both in the context of standard Bayesian
inference and generalizations thereof [28/47]. To alleviate model misspecification
in generalized Bayesian inference, researchers have investigated probabilistic
classifiers [52], second-order PAC-Bayes bounds [36], scoring rules [19], priors
over a class of predictive models [3I], or Stein discrepancy as a loss function [37].
Notably, these approaches deviate from the standard Bayesian formulation and
investigate alternative schemes for belief updating and learning (e.g., replacing the
likelihood function with a generic loss function). In contrast, our method remains
grounded in the standard Bayesian framework embodying an implicit likelihood
principle [3]. Differently, power scaling methods incorporate a modified likelihood
(raised to a power 0 < « < 1) in order to prevent potentially overconfident
Bayesian updating [23l26]. However, the SBI setting assumes that the likelihood
function is not available in closed-form, which makes an explicit modification of
the implicitly defined likelihood less obvious.

Neural approaches to amortized SBI can be categorized as either targeting
the posterior [45121], the likelihood [4324], or both [56]. These methods employ
simulations for training amortized neural approximators which can either generate
samples from the posterior directly [45I21I56] or in tandem with Markov chain
Monte Carlo (MCMC) sampling algorithms [4324]. Since the behavior of these
methods depends on the fidelity of the simulations used as training data, we
hypothesize that their estimation quality will be, in general, unpredictable,
when faced with atypical real-world data. Indeed, the critical impact of model
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misspecification in neural SBI has been commonly acknowledged in the scientific
research community [SITI58ITEIT5I39).

Recent approaches to detect model misspecification in simulation-based in-
ference are usually based on the obtained approximate posterior distribution
[25/12130]. However, we show in Experiment 1 and Experiment 5 (Ap-
pendix) that the approximate posteriors in simulation-based inference tend to
show pathological behavior under misspecified models. Posteriors from misspeci-
fied models may erroneously look legitimate, rendering diagnostic methods on
their basis unreliable. Moreover, the same applies for approaches based on the
posterior predictive distribution [TII7I53] since these also rely on the fidelity of
the posterior distribution and can therefore only serve as an indirect measure of
misspecification.

A few novel techniques aim to mitigate model misspecification in simulation-
based inference to achieve robust inference. [11] equip neural ratio estimation [24]
with a balancing condition which tends to produce more conservative posterior
approximations. [54] explore a way to alleviate model misspecification with
two neural approximators and subsequent MCMC. While both approaches are
appealing in theory, the computational burden of MCMC sampling contradicts the
idea of amortized inference and prohibits their use in complex applications with
learned summary statistics and large amounts of data. In fact, [29] used amortized
neural SBI on more than a million data sets of multiple observations each and
demonstrated that an alternative inference method involving non-amortized
MCMC would have taken years of sampling.

For robust non-amortized ABC samplers, the possibility of utilizing hand-
crafted summary statistics as an important element of misspecification analysis
has already been explored [T6I15]. Our work parallels these ideas and extends them
to the case of learnable summary statistics in amortized SBI on potentially massive
data sets, where ABC becomes infeasible. However, we show in Experiment 2
that our method also works with hand-crafted summary statistics.

Finally, from the perspective of deep anomaly detection, our approach for
learning informative summary statistics can be viewed as a special case of
generic normality feature learning [40]. Standard learned summary statistics
are optimized with a generic feature learning objective which is not primarily
designed for anomaly detection [45]. However, since learned summary statistics
are also optimized to be maximally informative for posterior inference, they will
likely capture underlying data regularities [40)].

3 Method

For simulation-based Bayesian inference, we define a generative model as a
triple M = (g(@7 &), p(&| 9),p(0)). A generative model M generates data x € X
according to the system

w:g(07£) with £Np(£|0)7 0~p(0)7 (1)

where g denotes a (randomized) simulator, £ € = is a source of randomness
(i.e., noise) with density function p(£]60), and p(€) encodes prior knowledge
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about plausible simulation parameters 8 € @. Throughout the paper, we use the
decorated symbol & to mark data that was in fact observed in the real world
and not merely simulated by the assumed model M. The parameters 6 consist
of hidden properties whose role in g we explicitly understand and model, and &
takes care of nuisance effects that we only treat statistically. The abstract spaces
X, =, and © denote the domain of possible output data (possible worlds), the
scope of noise, and the set of admissible model parameters, respectively. The
distinction between hidden properties @ and noise £ is not entirely clear-cut, but
depends on our modeling goals and may vary across applications.

Our generative model formulation is equivalent to the standard factoriza-
tion of the Bayesian joint distribution into likelihood and prior, p(@, x| M) =
p(x]| 0, M) p(0| M), where M expresses the prior knowledge and assumptions
embodied in the model. The likelihood is obtained by marginalizing the joint
distribution p(&,x |8, M) over all possible values of the nuisance parameters &,
that is, over all possible execution paths of the simulation program, for fixed 6:

p( |6, M) = / p(€, 2|0, M) d. )

This integral is typically intractable [9], but we assume that it exists and
is non-degenerate, that is, it defines a proper density over the constrained
manifold (g(0,&),&), and this density can be learned. A major challenge in
Bayesian inference is approximating the posterior distribution p(0 |z, M)
p(x] 0, M) p(0| M). Below, we focus on amortized posterior approximation with
neural networks, which aims to achieve zero-shot posterior sampling for any input
data @ compatible with the reference model ./\/1E|

3.1 Neural Posterior Estimation

Neural Posterior Estimation (NPE) with learned summary statistics hy () in-
volves a posterior network and a summary network which jointly minimize the
expected KL divergence between analytic and approximate posterior

W4 = argnin By vy (KL [p(0 |2, M)||45(8] hy (@), M)] |, (3)

where the expectation runs over the prior predictive distribution p(x| M). The
above criterion simplifies to

Wt Pt = ari%lginEp(g’m | M) [ —log g¢ (9 | h¢(:1:), M)} , (4)
since the analytic posterior p(0 |, M) does not depend on the trainable neural
network parameters (1), ¢). This criterion optimizes a summary (aka embedding)
network with parameters 1¢» and an inference network with parameters ¢ which

5 We demonstrate in Experiment 1 that model misspecification also affects the
performance of non-amortized sequential neural posterior estimation.
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learn to perform zero-shot posterior estimation over the generative scope of M.
The summary network transforms input data x of variable size and structure
to a fixed-length representation z = hy (). The inference network fg generates
random draws from an approximate posterior g4 via a normalizing flow, for
instance, realized by a conditional invertible neural network [2] or a conditional
masked autoregressive flow [42].

We approximate the expectation in Eq. ] via simulations from the generative
model M and repeat the process until convergence, which enables us to perform
fully amortized inference (i.e., the posterior functional can be evaluated for any
number of observed data sets &). Moreover, this objective is self-consistent and
results in correct amortized inference under optimal convergence [21/45].

3.2 Model Misspecification in Simulation-Based Inference

When modeling a complex system or process, we typically assume an unknown
(true) generator M*, which yields an unknown (true) distribution & ~ p*(x)
and is available to the data analyst only via a finite realization (i.e., actually
observed data &). According to a common definition [T6J55/36I32], the generative
model M is well-specified if a “true” parameter 6* € © exists, such that the
(conditional) likelihood matches the data-generating distribution,

p(x |67, M) = p*(z), ®)

and misspecified otherwise. This likelihood-centered definition is well-established
and sensible in many domains of Bayesian inference.

In simulation-based inference, however, there is an additional difficulty regard-
ing model specification: Simulation-based training (see Eq. [3) takes the expecta-
tion with respect to the model-implied prior predictive distribution p(x | M), not
necessarily the “true” real-world distribution p*(x). Thus, optimal convergence
does not imply correct amortized inference or faithful prediction in the real world
when there is a simulation gap, that is, when the assumed training model M
deviates critically from the unknown true generative model M*.

Crucially, even if the generative model M is well-specified according to the
likelihood-centered definition in Eq. [f] finite training with respect to a “wrong”
prior (predictive) distribution will likely result in insufficient learning of relevant
parameter (and data) regions. This scenario could also be framed as “out-of-
simulation” (OOSim) by analogy with the common out-of-distribution (OOD)
problem in machine learning applications [57]. In fact, we observe in Experiment
1 that a misspecified prior distribution worsens posterior inference just like a
misspecified likelihood function does.

Thus, our adjusted definition of model misspecification in the context of
simulation-based inference considers the entire prior predictive distribution
p(x | M): A generative model M is well-specified if the information loss through
modeling p*(x) with p(x | M) falls below an acceptance threshold ¥,

D[p(z | M) [|p*(x)] <, (6)
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and misspecified otherwise. The symbol D denotes a divergence metric quantifying
the “distance” between the data distributions implied by reality and by the model
(i.e., the marginal likelihood). A natural choice for D would stem from the family
of F-divergences, such as the KL divergence. However, we choose the Maximum
Mean Discrepancy (MMD) because we can tractably estimate it on finite samples
from p(x | M) and p*(x) and its analytic value equals zero if and only if the two
densities are equal [22].

Our adjusted definition of model misspecification no longer assumes the exis-
tence of a true parameter vector 8™ (cf. Eq. . Instead, we focus on the marginal
likelihood p(x | M) which represents the entire prior predictive distribution of a
model and does not commit to a single most representative parameter vector.
In this way, multiple models whose marginal distributions are representative of
p*(x) can be considered well-specified without any reference to some hypothetical
ground-truth 8", which may not even exist for opaque systems with unknown
properties.

3.3 Structured Summary Statistics

In simulation-based inference, summary statistics have a dual purpose because (i)
they are fixed-length vectors, even if the input data « have variable length; and (ii)
they usually contain crucial features of the data, which simplifies neural posterior
inference. However, in complex real-world scenarios such as COVID-19 modeling
(see Experiment 3), it is not feasible to rely on hand-crafted summary statistics.
Thus, combining neural posterior estimation with learned summary statistics
leverages the benefits of summary statistics (i.e., compression to fixed-length
vectors) while avoiding the virtually impossible task of designing hand-crafted
summary statistics for complex models.

In simulation-based inference, the summary network h,, acts as an interface
between the data x and the inference network fg. Its role is to learn maximally
informative summary vectors of fixed size S from complex and structured ob-
servations (e.g., sets of i.i.d. measurements or multivariate time series). Since
the learned summary statistics are optimized to be maximally informative for
posterior inference, they are forced to capture underlying data regularities (see
Section . Therefore, we deem the summary network’s representation z = Ry, ()
as an adequate target to detect simulation gaps.

Specifically, we prescribe an S-dimensional multivariate unit (aka. standard)
Gaussian distribution to the summary space, p(z = hy () | M) ~ N (2]0,1), by
minimizing the MMD between summary network outputs and random draws from
a unit Gaussian distribution. To ensure that the summary vectors comply with
the support of the Gaussian density, we use a linear (bottleneck) output layer
with S units in the summary network. A random vector in summary space takes
the form hy(x) = z = (21,...,25) € RS. The extended optimization objective
follows as

A arglgin Ep0,2| M) [ —log qg (0 | hy (), M)}

+ 5 MMID? [p(hy () | M) | N(0,1)]

(7)
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with a hyperparameter v to control the relative weight of the MMD term.
Intuitively, this objective encourages the approximate posterior gg (6 | hy (), M)
to match the correct posterior and the summary distribution p(hy () | M) to
match a unit Gaussian. The extended objective does not constitute a theoretical
trade-off between the two terms, since the MMD merely reshapes the summary
distribution in an information-preserving manner. In practice, the extended
objective may render optimization of the summary network more difficult, but
our experiments suggest that it does not restrict the quality of the amortized
posteriors.

This method is also directly applicable to hand-crafted summary statistics.
Hand-crafted summary statistics already have fixed length and usually contain
rich information for posterior inference. Thus, the task of the summary network h.
simplifies to transforming the hand-crafted summary statistics to a unit Gaussian
(Eq. [7) to enable model misspecification via distribution matching during test
time (see below). We apply our method to a problem with hand-crafted summary
statistics in Experiment 2.

3.4 Detecting Model Misspecification with Finite Data

Once the simulation-based training phase is completed, we can generate M
validation samples {G(m), :c(m)} from our generative model M and pass them
through the summary network to obtain a sample of latent summary vectors
{z(M)}, where z = hy(x) denotes the output of the summary network. The
properties of this sample contain important convergence information: If z is
approximately unit Gaussian, we can assume a structured summary space given
the training model M. This enables model misspecification diagnostics via
distribution checking during inference on real data (see the Appendix for the
detailed algorithm).

Let {#(™} be an observed sample, either simulated from a different generative
model, or arising from real-world observations with an unknown generator. Before
invoking the inference network, we pass this sample through the summary network
to obtain the summary statistics for the sample: {%(") }. We then compare the val-
idation summary distribution {z("™} with the summary statistics of the observed
data {2(™} according to the sample-based MMD estimate MMD (p(2) || p(2))
[22]. Importantly, we are not limited to pre-determined sizes of simulated or
real-world data sets, as the MMD estimator is defined for arbitrary M and N.
To allow MMD estimation for data sets with single instances (N =1 or M = 1),
we do not use the unbiased MMD version from [22]. Singleton data sets are
an important use case for our method in practice, and potential advantages of
unbiased estimators do not justify exclusion of such data. To enhance visibility,
the figures in the experimental section will depict the square root of the originally
squared MMD estimate.

Whenever we estimate the MMD from finite data, its estimates vary according
to a sampling distribution and we can resort to a frequentist hypothesis test to
determine the probability of observed MMD values under well-specified models.
Although this sampling distribution under the null hypothesis is unknown, we can
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Fig.2: Experiment 1. Summary space samples for the minimal sufficient sum-
mary network (S = 2) from a well-specified model M (blue) and several mis-
specified configurations. Left: Prior misspecification can be detected. Right:
Noise misspecification can be detected, while simulator scale misspecification is
indistinguishable from the validation summary statistics.

estimate it from multiple sets of simulations from the generative model, {z("™)}
and {z™}, with M large and N equal to the number of real data sets. Based on
the estimated sampling distribution, we can obtain a critical MMD value for a
fixed Type I error probability («) and compare it to the one estimated with the
observed data. In general, a larger « level corresponds to a more conservative
modeling approach: A larger type I error implies that more tests reject the null
hypothesis, which corresponds to more frequent model misspecification alarms
and a higher chance that incorrect models will be recognised. The Type II error
probability (/) of this test will generally be high (i.e., the power of the test will
be low) whenever the number of real data sets N is very small. However, we show
in Experiment 3 that even as few as 5 real data sets suffice to achieve § = 0
for a complex model on COVID-19 time series.

4 Experiments

4.1 Experiment 1: 2D Gaussian Means

We set the stage by estimating the means of a 2-dimensional conjugate Gaussian
model with K = 100 observations per data set and a known analytic posterior in
order to illustrate our method. This experiment contains the Gaussian examples
from [16] and [54], and extends them by (i) studying misspecifications beyond
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Fig.3: Experiment 1. Summary space MMD as a function of misspecification
severity. White stars indicate the well-specified model configuration (i.e., equal
to the training model M).

the likelihood variance (see below); and (ii) implementing continuously widening
simulation gaps, as opposed to a single discrete misspecification. The data
generating process is defined as

zp~N(x|p,X) fork=1,..,K  with p~N(u|p,Xo). (8)

As a summary network, we use a permutation invariant network [5] with S = 2
output dimensions, which equal the number of minimal sufficient statistics implied
by the analytic posterior. The terms “minimal”, “sufficient”, and “overcomplete”
refer to the inference task and not to the data. Thus, S = 2 summary statistics
are sufficient to solve the inference task, namely recover two means. For training
the posterior approximator, we set the prior of the generative model M to a unit
Gaussian and the likelihood covariance X' to an identity matrix.

We induce prior misspecification by altering the prior location p, and co-
variance Xy = 7l (only diagonal covariance, controlled through the factor 7p).
Further, we achieve misspecified likelihoods by manipulating the likelihood co-
variance X = 71 (only diagonal covariance, controlled through 7). We induce
noise misspecification by replacing a fraction A € [0, 1] of the data « with samples
from a scaled Beta(2,5) distribution.

Results. The neural posterior estimator trained to minimize the augmented
objective (Eq.[7)) exhibits excellent recovery and calibration [50/49] in the well-
specified case, as shown in the Appendix. All prior misspecifications manifest
themselves in anomalies in the summary space which are directly detectable
through visual inspection of the 2-dimensional summary space in (left).
Note that the combined prior misspecification (location and scale) exhibits a
summary space pattern that combines the location and scale of the respective
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Fig.4: Experiment 2. MMD increases with misspecification severity @; mean,
SD of 20 repetitions). Our test easily detects the setting from [54] @

location and scale misspecifications. However, based on the 2-dimensional sum-
mary space, misspecifications in the fixed parameters of the likelihood (7) and
mixture noise are not detectable via an increased MMD (see top right).

We further investigate the effect of an overcomplete summary space with
respect to the inference task, namely S = 4 learned summary statistics with an
otherwise equal architecture. In addition to prior misspecifications, the overcom-
plete summary network also captures misspecifications in the noise and simulator
via the MMD criterion (see bottom row). Furthermore, the induced mis-
specifications in the noise and simulator are visually detectable in the summary
space samples (see Appendix). Recall that the 2-dimensional summary space fails
to capture these misspecifications (see top right). The effect of model
misspecificaiton on the posterior recovery error is described in the Appendix.

SNPE-C. Our method successfully detects model misspecification using SNPE-
C [21] with a structured summary space (see Appendix). The results are largely
equivalent to those obtained with NPE, as implemented in the BayesFlow frame-
work [45].

4.2 Experiment 2: Cancer and Stromal Cell Model

This experiment illustrates model misspecification detection in a marked point
process model of cancer and stromal cells [27]. We use the original implementation
of [54] with hand-crafted summary statistics and showcase the applicability of
our method in scenarios where good summary statistics are known. The inference
parameters are three Poisson rates A¢, Ay, Ag, and the setup in [54] extracts four
hand-crafted summary statistics from the 2D plane data: (1-2) number of cancer
and stromal cells; (3-4) mean and maximum distance from stromal cells to the
nearest cancer cell. All implementation details are described in the Appendix.
We achieve misspecification during inference by mimicking necrosis, which
often occurs in core regions of tumors. A Bernoulli distribution with parameter
7 controls whether a cell is affected by necrosis or not. Consequently, 7 = 0
implies no necrosis (and thus no simulation gap), and = = 1 entails that all cells
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are affected. The experiments by [54] study a single misspecification, namely
the case m = 0.75 in our implementation. In order to employ our proposed
method for model misspecification detection, we add a small summary network
hy : R* — R* consisting of three hidden fully connected layers with 64 units
each. This network h,, merely transforms the hand-crafted summary statistics
into a 4-D unit Gaussian, followed by NPE for posterior inference.

Results. Our MMD misspecification score increases with increasingly severe
model misspecification (i.e., increasing necrosis rate ), see What is
more, for the single misspecification © = 0.75 studied by [54], we illustrate (i) the
power of our proposed hypothesis test; and (ii) the summary space distribution for
misspecified data. The power (1 — ) essentially equals 1, as shown in
The MMD sampling distributions under the training model (Hy) and under the
observed data generating process (M*) are completely separated.

4.3 Experiment 3: Epidemiological Model for COVID-19

As a final real-world example, we treat a high-

dimensional compartmental model represent- _ g:rma"y data
ing the early months of the COVID-19 pan- 5% rejection area
demic in Germany [44]. We investigate the util-
ity of our method to detect simulation gaps
in a much more realistic and non-trivial exten-

MMD

sion of the SIR settings in [34] and [54] with
substantially increased complexity. Moreover,
we perform inference on real COVID-19 data Fig.5: Representation of Ger-
from Germany and use our new method to test many’s COVID-19 time series
whether the model used in [44] is misspecified, w.r.t. the MMD distribution un-
possibly undermining the trustworthiness of der Hy : p*(x) = p(x | M).
political conclusions that are based on the in-
ferred posteriors. To achieve this, we train an NPE setup with the BayesFlow
framework [45] identical to [44] but using our new optimization objective (Eq.
to encourage a structured summary space. We then simulate 1000 time series
from the training model M and 1000 time series from three misspecified models:
(i) a model M; without an intervention sub-model; (ii) a model Mo without an
observation sub-model; (iii) a model M3 without a “carrier” compartment [10].
Results. shows the MMD between the summary representation of N =
1,2, 5 bootstrapped time series from each model and the summary representation
of the 1000 time series from model M (see the Appendix for bootstrapping
details). We also calculate the power (1 — 3) of our hypothesis test for each
misspecified model under the sampling distribution estimated from 1000 samples
of the 1000 time series from M at a type I error probability of o = .05. We
observe that the power of the test rapidly increases with more data sets and the
Type II error probability (3) is essentially zero for as few as N =5 time series.
As a next step, we pass the reported COVID-19 data between 1 March
and 21 April 2020 [I3] through the summary network and compute the critical
MMD value for a sampling-based hypothesis test with an « level of .05 (see
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Bootstrap MMD Power (1 —0)

N=1 N =2 N=5 N=1N=2N=5
M [3.70[3.65,3.79] 2.61[2.54,2.91] 1.66 [1.59, 1.84]

My [3.76[3.72,3.80] 2.86[2.62,3.16] 2.11 [1.82,2.50]| .998 .958 =~ 1.0

M, [3.80[3.73,3.83] 2.81[2.65,3.00] 2.01[1.82,2.19]| .789 .804 ~ 1.0

M |3.78[3.74,3.83] 2.81[2.68,3.11] 2.07[1.92,2.41]| .631 .690 =~ 1.0
Table 1: Experiment 3. Results for different variations of the COVID-19 com-
partmental model. We report the median and 95% CI of 100 bootstrap samples.

Model

Figure 5)). The MMD of the Germany data is well below the critical MMD value
(it essentially lies in the bulk of the distribution), leading to the conclusion that
the assumed training model M is well-specified for this time period.

5 Conclusions

This paper approached a fundamental problem in amortized simulation-based
Bayesian inference, namely, flagging potential posterior errors due to model
misspecification. We argued that misspecified models might cause so-called
simulation gaps, resulting in deviations between simulations during training time
and actual observed data at test time. We further showed that simulation gaps can
be detrimental for the performance and faithfulness of simulation-based inference
relying on neural networks. We proposed to increase the networks’ awareness of
posterior errors by compressing simulations into a structured latent summary
space induced by a modified optimization objective in an unsupervised fashion. We
then applied the maximum mean discrepancy (MMD) estimator, equipped with a
sampling-based hypothesis test, as a criterion to spotlight discrepancies between
model-implied and actually observed distributions in summary space. While we
focused on the application to NPE (BayesFlow implementation [45]) and SNPE
(sbi implementation [51]), the proposed method can be easily integrated into
other inference algorithms and frameworks as well. Our software implementations
are available in the BayesFlow library (www.bayesflow.org) and can be seamlessly
integrated into an end-to-end workflow for amortized simulation-based inference.
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