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Abstract. Converting a model’s internals to text can yield human-understandable
insights about the model. Inspired by the recent success of training-free ap-
proaches for image captioning, we propose ZS-A2T, a zero-shot framework that
translates the transformer attention of a given model into natural language with-
out requiring any training. We consider this in the context of Visual Question
Answering (VQA). ZS-A2T builds on a pre-trained large language model (LLM),
which receives a task prompt, question, and predicted answer, as inputs. The LLM
is guided to select tokens which describe the regions in the input image that the
VQA model attended to. Crucially, we determine this similarity by exploiting the
text-image matching capabilities of the underlying VQA model. Our framework
does not require any training and allows the drop-in replacement of different guid-
ing sources (e.g. attribution instead of attention maps), or language models. We
evaluate this novel task on textual explanation datasets for VQA, giving state-of-
the-art performances for the zero-shot setting on GQA-REX and VQA-X. Our
code is available here.

Keywords: Zero-Shot Translation of Attention Patterns · VQA.

1 Introduction

Deep learning systems have become an integral part of our society, both in non-obvious
applications, e.g. customer credit scoring, as well as in prominent applications, e.g.
ChatGPT [25]. Their impact on the lives of millions of people establishes the need to
make these algorithms more transparent and accessible. In the context of Visual Question
Answering (VQA) [2,13], methods for attribution [33] or attention visualization [1] aim
to highlight the input image regions that are most relevant for the final decision. However,
the actual visual concepts that the model “saw” in the salient regions can remain obscure
to the user. In contrast, a natural language description of those visual concepts can be a
more intuitive format for a human user.

There is a wide variety of approaches to determine image regions that were relevant
for a model’s output. Many of those methods do not require training and can be directly
applied to a given model to generate attribution or attention visualizations. As it is
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infeasible to train a dedicated model for translating method-specific visual explanations
to natural language, we try to address the question: Can we convert the output of any
attention or attribution method to natural language without any supervisory data?
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Fig. 1: Our ZS-A2T framework performs
training-free translation of attention patterns
from VQA models into natural language
by combining a pre-trained large language
model with language guiding with the VQA
model’s attention.

Inspired by the impressive capabil-
ities of pre-trained LLMs, we propose
a zero-shot attention-to-text (ZS-A2T)
framework which translates the internal
attention of a transformer-based VQA
model into natural language without re-
quiring training (see Figure 1). In par-
ticular, ZS-A2T uses a LLM that is
steered by visual inputs corresponding to
model attribution or attention visualiza-
tions. We judge the visual relevance of
the LLM’s proposals with an image-text
matching framework. In contrast to re-
lated zero-shot image captioning methods
like [37,41,40], ZS-A2T does not exploit
CLIP [29], whose image-text understanding would be different from the original task
model. Instead, we re-use the encoders of the underlying VQA model for quantifying
the agreement between the visual evidence and the candidate word. This guides the text
generation without introducing external input into the translation process.

We hypothesize that the content of the verbalizations of the attention patterns for
VQA should capture the visual evidence that was used for VQA. This visual evidence
should also be described in the corresponding textual explanations. Therefore, we
evaluate the quality of our generated attention pattern translations on the VQA-X and
GQA-REX datasets. Whilst naturally giving weaker results than methods that were
trained to generate explanations in a fully supervised manner along with solving the
VQA task, our proposed ZS-A2T outperforms all related methods in this novel zero-
shot attention pattern translation setting. Additionally, the training-free setup of our
method allows our approach to use different language models without any adaption
or training. Similarly, our framework works for any attention aggregation or visual
attribution method that can be applied to the underlying VQA model.

To summarize, our contributions are: 1) We introduce the task of converting the
internal structures of VQA models to natural language. 2) Our proposed zero-shot ZS-
A2T framework is a simple, yet effective method for generating textual outputs with
the guidance of the aggregated internal attention and text-image matching capabilities
of the VQA model. 3) ZS-A2T can be utilized in conjunction with any pre-trained
language model or visual attribution technique, and achieves state-of-the-art results on
the GQA-REX and VQA-X textual explanation benchmarks in the zero-shot setting.

2 Related Work

Attention visualizations and visual attribution. Visual attribution methods commonly
use backpropagation to trace a model’s output to its input, e.g. by visualizing the
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(slightly modified) gradients on the corresponding input image [34,36,46,35,48,4]. In
addition to that, CAM [50], Grad-CAM [33,32], and variants thereof [9,12,24,28] use
model activations in the attribution visualizations. Different to visual attribution meth-
ods, perturbation-based methods slightly alter the input and record the resulting changes
in the output [11,10]. Unfortunately, it is hard to quantify the quality of attribution visu-
alizations [18]. For modern transformer-based models, a number of studies [16,45,1,7]
have investigated the extraction and visualization of attention scores. In particular, at-
tention rollout [1] determines the relevance of input tokens by following the flow of
information that is captured in the attention scores and residual connections of the trans-
former network. However, it is not clear if the resulting visualizations are an intuitive
way of explaining deep learning models to human users. Our proposed ZS-A2T frame-
work offers a way of translating such outputs into natural language.
Visual conditioning for text generation with LLMs. Several works have used LLMs
for zero-shot image captioning [41,37,40,47,44]. ZeroCap [41] uses CLIP [29] for up-
dating the language model’s hidden activations to match the image input. Similarly,
MAGIC [37] combines the prediction of the language model, CLIPs rating and a degen-
eration penalty [38]. EPT [40] only optimizes the hidden activations of a few selected
pseudo-tokens for zero-shot video captioning. In contrast to these approaches, Socratic
Models [47] generates captions by conditioning the language model on CLIP-detected
class names. Another creative approach [44] finetunes a language model to process
CLIP text embeddings which at test time can be replaced by CLIP image embeddings.
Similarly, [22] finetunes with caption data and addresses the modality gap in a training-
free manner. Different to the two aforementioned methods [44,22], ZS-A2T does not
require any training (beyond the pre-trained models used) or external models for guiding
the language generation, such as CLIP. In particular, the text generation in ZS-A2T is
controlled using the VQA model’s internal attention along with exploiting the image-text
matching capabilities of the same model.
Textual explanations for VQA. Several VQA datasets with textual explanations have
driven research on explaining outputs of models trained for VQA. In particular, the
VQA-X [15] dataset extends a subset of VQA v2 [13] with textual explanations from
obtained from humans. In contrast, the VQA-E dataset [21] automatically sources
explanations from image captions. Recently, the CLEVR-X [30] and GQA-REX [8]
extended the CLEVR [17] and GQA [14] datasets with textual explanations by exploiting
the corresponding scene graphs. In this work, we evaluate the verbalization of a model’s
internal attention on textual explanation datasets in the context of VQA, since textual
explanations and visual attribution visualizations should both indicate the key features
that influenced a VQA model’s output.

3 The ZS-A2T Framework

In this section, we explain our proposed framework which is visualized in Figure 2. We
propose the ZS-A2T (Zero-Shot Attention to Translation) framework which converts
the internal attention in a VQA model into natural language by translating the visualiza-
tion of the aggregated attention in the transformer model into natural language without
any supervision. In particular, we prompt a pre-trained large language model for the
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Fig. 2: Our ZS-A2T framework translates the attention rollout [1] of a VQA model
into natural language. A pre-trained large language model is prompted with the task
description, the question Q, and the predicted answer a. The candidates for the next
token xt along with their continuations (italic) are then re-ranked by re-using the image-
text matching capabilities of the VQA model. We match the full sentences consisting
of already generated tokens, the candidates and their respective continuations with the
attention-masked image Î . This information is used to steer the output of a pre-trained
language model without requiring any training.

translation task, and additionally provide the input question and the answer prediction
from the VQA model. The text generation is guided by the attention rollout result
through the help of the VQA model itself. Token by token, this approach converts visual
explanations, i.e. visual attention patterns, into natural language.
Pre-trained language model. Our ZS-A2T framework exploits a pre-trained large
language model as its text generator. We condition the language model on two different
inputs: (i) a task description, (ii) sample specific inputs (i.e. the question Q, and the
predicted answer a), and the already generated tokens. We then generate the translation
in an autoregressive setup by feeding each predicted token back to the language model.
It models the probability

pθ(xt | x0, . . . , xl−1︸ ︷︷ ︸
task

, xl, . . . , xl+s−1︸ ︷︷ ︸
sample (Q, a)

, xl+s, . . . , xt−1︸ ︷︷ ︸
autoregressive

) (1)

for a token xt at step t, where l is the number of task tokens and s is the number of
sample tokens. θ are the parameters of the pre-trained language model.

The probability of the next token xt defined in Equation (1) is independent of the
input image. As the pre-trained language model is conditioned on the question and an-
swer, we expect it to predict tokens that fit the question and answer. However, candidate
tokens that are likely from a grammatical or statistical point of view, e.g. those that
occur frequently in the training text corpus, will be ranked highly. Thus, we argue that
the language model predicts the correct tokens for the given question, image, and answer
triplet, but not necessarily ranked correctly. To accurately describe the visual concepts,
we rely on attention-controlled guiding of the VQA model.
Attention-controlled guiding. To generate natural language that actually corresponds
to the prediction of the VQA model, we condition the text generation on a masked
version of the input image. We obtain an attention-masked image by removing the image



Zero-shot Translation of Attention Patterns in VQA Models to Natural Language 5

information that was not relevant for generating the VQA model’s answer prediction a.
The removal of information from the image is determined by the internal attention of the
VQA model. For this, we use attention rollout which will be described in the following.
Attention rollout. The attention of the given VQA model is aggregated based on
attention rollout [1]. Here, we describe the rollout process for an encoder-decoder
VQA model which interlinks the modalities with cross-attention. However, different
techniques for obtaining an attention-masked image could be used.

To determine the answer relevant image parts, we record the self-attention scores
Aqq

l (for the question tokens) and Aii
l (for the image tokens). We also trace the cross-

attention scores Aqi
l , which model the attention to the image tokens by the question

tokens in layer l. The attention scores are saved for each layer l in the VQA model
during inference. As attention heads differ in importance [43] we only use the maximum
activation Āl = max(Al) across all heads. Following [1,7], we model how the attention
flows throughout the network. We successively multiply the attention scores of a layer
with the rolled out values Rl of the previous layer to obtain a final attention rollout
map. Additionally, we add the map of the previous layer R̃l−i to model the residual
connection. For self-attention, R0 is initialized as a diagonal matrix since each token
only contains its own information. For cross-attention, Rqi

0 is initialized to zero, as the
tokens have not been contextualized yet.

To roll out the self-attention for the question and visual tokens, we compute the fol-
lowing values for all layers which leverage self-attention before applying normalization,

Rqq
l = Rqq

l−i + Āqq
l ·Rqq

l−i, Rii
l = Rii

l−i + Āii
l ·Rii

l−i. (2)

Additionally, we unroll the cross-attention to capture how the VQA model incorporates
the visual information into the question representation:

Rqi
l = Rqi

l−i +Rii
l−i

⊺ · Âl ·Rqq
l−i. (3)

After modelling the residual connection, this captures how the attention rollout of both
the question and image tokens is incorporated into the cross-attention. For layers that
mix self- and cross-attention we also account for the cross-modal information mixed in
at the previous layer:

Rqi
l = Rqi

l−i + Âqq
l ·Rqi

l−i. (4)

In the final layer, Rqi
L models the importance of each input question token and each

visual token for the VQA model’s prediction. We average Rqi
L over all question tokens

to obtain the final aggregated attention map R̄qi
L . The threshold τ is applied to get a

binary mask which is rescaled to the input image size to obtain M ,

M =

{
1, if τ < R̄qi

L ,

0, otherwise.
(5)

The attention-masked image Î is computed by eliminating irrelevant image parts Î =
M ∗ I , where ∗ is the element-wise multiplication.
Visually guided text generation. In the following, we describe the attention-controlled
visual guiding of the language decoding process in detail. The language generation at
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step t starts with the pre-trained language model predicting the probability distribution
over all tokens in the vocabulary. We only consider the top-k predictions c1, · · · , ck for
the token xt and refer to those as candidates. This subset can be selected for two reasons:
a) as argued above it is plausible that a sufficiently large language model conditioned
on the question and answer ranks plausible words highly, and b) the weighted sum
described in Equation (7) does not change for sufficiently large k as pθ is a result of a
softmax operation, yielding small values for non-top activations.

In contrast to previous works [41,40,37] which score incomplete sentences with an
external image-text matching model (e.g. CLIP), we score a completed sentence with
the same task model whose attention patterns we aim to convert to text. Our approach
relies on the fact that image-text matching losses used by VQA models are commonly
supervised with complete sentences instead of sentence fractions.

We let the language model complete the sentence for each candidate ci separately
based only on the predictions of the language model conditioned on the already gener-
ated tokens x≤t and the candidate ci. Each continuation is terminated at the first “.”,
such that the previously generated tokens, the candidate, and the continuation form a
complete sentence ĉi. We do not include the question or answer as parts of the can-
didates. We use top-p sampling to filter the predictions of the language model to get
a plausible continuation. Next, the completed sentences ĉi are ranked by performing
image-text matching.

The attention controlled guiding is executed by feeding the text input ĉi and the
masked image Î as inputs to the VQA model’s uni-modal encoders. In particular, we
proceed with the contextualized embedding of the [CLS] token ve(Î) of the vision
encoder and the corresponding [CLS] token te(ĉi) of the text encoder. Both tokens are
projected into a joint space using the linear maps gv and gt provided by the VQA model.
This allows to measure the quality of the matching of the image-text pairs.

The matching quality f(Î , ĉi) of a candidate sentence ĉi with respect to the at-
tention rollout-masked image Î is determined by first computing the cosine similarity
CosSim(·, ·) of all possible image-sentence matches,

f(Î , ĉi) =
eκ·CosSim(gv(ve(Î)),gt(te(ĉi)))∑

j∈1,...,k e
κ·CosSim(gv(ve(Î)),gt(te(ĉj)))

. (6)

Then, we apply a temperature κ in the softmax operation which affects the sharpness
of the distribution. Very small values of κ would approximate a uniform distribution,
largely disabling the influence of the visual guiding component. On the other hand, too
large values may overemphasize highly salient visual concepts, at the cost of grammat-
ical issues (due to overruling the language model). Thus, κ is manually chosen, such
that the distribution of the predictions f roughly matches the language model pθ.

To determine the next token, we compute a weighted sum of the prediction of the
language model pθ and the matching quality f obtained with the VQA model. Thus, at
time step t, the next token xt is computed according to:

xt = argmax
i∈1,...,k

{
pθ (ci | x0, . . . , x<t) + β · f

(
Î , ĉi

)}
, (7)
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GQA-REX [14,8] VQA-X [15]

Setting Framework↓ B4 M RL C S B4 M RL C S

Zero-shot

ZeroCap GPT-2 [41]∗ 1.4 4.6 12.3 16.9 5.3 0.7 4.7 14.0 5.8 2.0
EPT GPT-2 [40]∗ 0.0 3.3 3.2 2.6 2.8 0.9 6.5 14.9 6.7 2.9
MAGIC GPT-2 [37]∗ 2.3 10.8 18.8 41.1 18.8 1.0 8.8 19.3 10.6 7.1
MAGIC OPT 6.7B [37]∗ 3.3 11.6 22.2 48.8 21.4 1.9 9.5 20.5 14.7 8.9
Socratic Models OPT 6.7B [47]∗ 3.3 14.1 22.8 40.5 19.3 3.6 12.8 25.7 19.9 10.1

ZS-A2T OPT 6.7B (ours) 10.2 18.2 35.0 113.5 31.4 8.5 13.8 34.2 38.1 10.5

Supervised
NLX-GPT [31] GPT-2 - - - - - 23.8 20.3 47.2 89.2 18.3
VisualBert-REX [8] LSTM 54.6 39.2 78.6 464.2 46.8 - - - - -

Table 1: Zero-shot model attention to natural language translation results in the context
of VQA evaluated on GQA-REX and VQA-X. We report Bleu-4 (B4), Meteor (M),
Rouge-L (RL), Cider (C), and Spice (S). Higher is better for all reported metrics. State-
of-the-art performances with textual explanation generation methods in the context of
VQA are included for reference (supervised). ∗We adapted the related frameworks to
the attention to natural language translation task, and also provided those methods with
privileged access to the VQA ground-truth answers.

where β is a scalar weighting factor. After selecting the next token xt, we append it to
the original language model prompt and repeat the above process for generating tokens
at step t+ 1 until reaching a stopping criterion (either an [EOS] token, or a period).

4 Experiments

In this section, we describe our experimental setup, including the pre-trained models
used in ZS-A2T, the datasets used, and the evaluation metrics. Experimental results
generated by ZS-A2T for the zero-shot textual explanation task in the context of VQA are
compared to four related training-free methods on the VQA-X and GQA-REX datasets.
Although we do not claim that our generated texts are explanations, we do believe
that these datasets are well suited for evaluation. Finally, we investigate individual
components in our framework in detail, such as the attention-controlled guiding, and the
language model prompting before providing qualitative results for ZS-A2T.
Experimental setup. We used the OPT [49] pre-trained language models for language
generation. The transformer-based ALBEF [20] finetuned for VQA, served as our
underlying VQA model. The weights for the projection layers are loaded from the
non-finetuned, pre-trained ALBEF model, which was trained on an image-text matching
objective. Both ALBEF variants were not trained to generate texts from the datasets
that we test on (VQA-X and GQA-REX). The threshold for the attention rollout scores
was set to τ = 200/256. For guiding, we determine the matching quality for the top-k
candidate tokens as k = 45 and our continuations are sampled with p = 0.15. The
guiding temperature is set to κ = 100. We set the scalar weighting factor between the
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language model and the attention-controlled guiding to β = 0.7. To maintain a clean
zero-shot protocol, we selected the hyperparameters on the validation split of VQA-X,
which is disjoint from the subsets used for the final evaluation. We applied the same
settings for GQA-REX without any further tuning.
Datasets. To evaluate all methods, we used the VQA-X [15] and GQA-REX [14,8]
datasets for textual explanations in the context of VQA. VQA-X3 extends a subset of
non-trivial VQAv2 [13] questions with human-generated natural language explanations
for the ground-truth answer. GQA-REX4 contains explanations for a subset of the real-
world visual reasoning question answering task posed in the GQA dataset. GQA-REX
contains one explanation per question-image pair. As two of the related approaches have
slow inference speeds (≈ 25s and ≈ 70s per sample [41,40] on an NVIDIA v100 GPU),
we evaluate all methods on a subset of the test set containing 2000 samples. This is
comparable in size to VQA-X’s test set. Our approach only needs 7.2s per sample, and
we compare inference speeds of all methods in Section C of the supplementary material.
Evaluation metrics. Unless stated otherwise, all models are evaluated in the zero-
shot setting, i.e. without any training, on the test sets of the respective datasets using
commonly reported natural language generation metrics similar to [15]. In particu-
lar, we report Bleu-4 (B4) [26], Meteor (M) [5], Rouge-L (RL) [23], Cider (C) [42],
and Spice (S) [3] scores. These metrics aim to capture the semantic overlap between
sentences by measuring (modified) precision [26] and recall [26,5,23] of n-grams. Ad-
ditionally, generalizations of n-grams like stemming [5,42], measures of sentence frag-
mentation [5] or tf-idf weighting [42] are applied to better match human judgement of
sentence similarity.

4.1 Comparing to Related Frameworks

To evaluate the quality of the generated translations, we show experimental results on
VQA-X and GQA-REX. As there are, to the best of our knowledge, no related works
that translate VQA attention patterns into natural language, we adapted a number of
zero-shot image captioning methods. For fair comparison, we modified all related works
by prompting them with the question and ground-truth answer, as they do not have a
dedicated VQA module. This favors the related works, as our framework may base
its translation on a wrongly predicted answer. Additionally, we show other common
evaluation schemes in Section B of the supplementary material.

First, we compare to the zero-shot image captioning works [41,37,40,47]. For a fair
comparison, we adapted the two stronger models (MAGIC and Socratic Models) to oper-
ate with the same language model as the one used in our framework (OPT 6.7B). ZS-A2T
outperforms all four related approaches for zero-shot translation of attention patterns
into natural language by wide margins (see Table 1). Interestingly, the optimization-
based approaches ZeroCap and EPT show relatively weak performances (on VQA-X
more so than on GQA-REX). This suggests that longer, more complicated prompts (in
contrast to the ones used for image captioning) make it hard to optimize helpful starting
parameters for the next token prediction (ZeroCap) or next sentence prediction (EPT).

3 Licensed under the BSD-2 license.
4 Licensed under the MIT license.
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MAGIC gives stronger results, but it is still largely outperformed by our ZS-A2T
framework. Similarly, Socratic Models (SMs), the strongest of the adapted related
works, is outperformed in all metrics. The generated sentences by ZS-A2T exhibit
greater word-by-word overlap with the ground-truth references than those of the related
approaches. In particular, this is indicated by the n-gram-based metric Bleu-4 for which
ZS-A2T obtains a score of 8.5 compared to 3.6 for SMs on VQA-X. Similarly, ZS-A2T
is stronger than SMs in terms of Meteor with 18.2 compared to 14.1 on GQA-REX and
13.8 compared to 12.8 on VQA-X. The same pattern holds true for all other metrics.

For context, we also list results with the recently published supervised models NLX-
GPT[31] for VQA-X and VisualBert-REX [8] for GQA-REX. They both employ joint
multi-modal transformer models to predict the sentences of the respective datasets.
Whilst not strictly comparable, since we translate only the question relevant image
regions, it is still interesting to note that our 5-shot variant (c.f. Table 5) significantly
shrinks the gap to the supervised models which used 31k VQA-X and 128k GQA-REX
training samples respectively, whereas our model does not require any training or just a
few in-context examples.

4.2 Ablation Studies on Guiding Inputs

In this section, we study the impact of using different input images in our attention-
controlled guiding (see Section 3) as well as the effect of guiding with completed sen-
tences (in contrast to incomplete sentences). In addition to this, we provide results
for using different visual explanation methods in ZS-A2T, i.e. for visual attribution
and perturbation methods. We show additional ablations for the attention thresholding
parameter θ and the guiding temperature κ in Section D of the supplementary material.

Guiding Input B4 M RL C S

Full Image 8.1 13.7 34.1 37.6 10.8
No Continuation 6.2 12.5 31.1 28.2 9.4

ZS-A2T (Rel. Masking + Cont.) 8.5 13.8 34.2 38.1 10.5

Table 2: Ablating the guiding input and text
continuation on VQA-X [15]. Our ZS-A2T
model uses an attention-masked image, ob-
tained from attention rollout [1], and text
continuation.

Influence of attention masking. Table 2
shows the effect of using an attention-
masked image in the visual guiding. Re-
stricting the guiding of the language gen-
eration to the attention-masked image im-
proves the language generation in terms
of the Bleu-4, Meteor, Rouge-L, and
Cider metrics. Interestingly, the Spice
metric is slightly higher (10.8 vs. 10.5)
when using the full image for guiding.

Influence of using text continuations. In Table 2, we also investigate the effect of
using the language model to generate text continuations, so that the guiding component
can judge completed sentences. Using the continuations increases all metrics, e.g. Cider
from 28.2 to 38.1. We hypothesize that this happens for two reasons. First, it reduces
the distribution shift between the contrastive image-text matching training of the VQA
model. Second, it allows the guiding to judge whether a greedy selection of the visually
grounded token at step t may lead to a completed sentence that is not visually supported.

Different visual explanation methods. In addition to using attention rollout to deter-
mine relevant image parts (described in Section 3), we use five other attribution methods



10 L. Salewski et al.

Attribution Method B4 M RL C S

Att. GradCAM [33,20] 7.5 13.3 32.8 33.0 9.2
EigenGradCAM [24] 7.5 13.1 32.8 32.3 9.2
XGradCAM [12] 6.7 12.4 32.1 30.1 9.1
GradCAMElementwise [28] 7.2 12.8 32.5 30.7 9.0
HiResCAM [9] 7.0 12.7 32.5 31.0 9.0

RISE [27] 7.5 13.3 33.1 33.5 9.9

ZS-A2T (attention rollout [1]) 8.5 13.8 34.2 38.1 10.5

LM (#Params) B4 M RL C S

GPT-2 (125M) 3.6 11.0 26.6 19.8 7.7

OPT (125M) 3.4 10.7 26.5 18.5 7.1
OPT (350M) 3.9 11.6 27.9 20.2 7.9
OPT (1.3B) 7.1 13.0 32.8 28.9 9.2
OPT (2.7B) 7.1 13.3 32.5 31.0 10.1
OPT (6.7B) 8.5 13.8 34.2 38.1 10.5

Table 3: Ablating different attribution and perturbation methods (left) and type and size
of the pre-trained language models (right) in our ZS-A2T framework on VQA-X [15].

and the perturbation-based visual explanation method RISE [27]. Table 3 (left) show-
cases that our approach can handle conceptually different visual explanation methods.

The backpropagation-based techniques from the GradCAM family build on the at-
tention probabilities and their respective gradients [33,20] from the same layer of the
VQA model (L = 11). Thus, the generated sentences using the different methods Eigen-
GradCAM [24], XGradCAM [12], GradCAMElementwise [28] and HiResCAM [9] are
of very similar quality in terms of the NLG metrics. Overall, their scores are lower than
the scores we obtain when using attention rollout [1]

We additionally show results with the input perturbation-based method RISE [27].
It filters the images applied to the given VQA model and evaluates the VQA model
multiple times whilst randomly masking parts of the image. The final importance map
is obtained by summing the random masks weighted by the predicted class probability.
This indicates the parts in the input that are salient for the VQA models’ prediction.
We find that the texts generated for RISE are slightly worse than those obtained with
attention rollout based attribution method (e.g. Bleu-4 7.5 vs. 8.5 (ours)).

Overall, the visual explanation methods’ different abilities to identify the correct
relevant image regions is reflected in the quality of the translations to natural language.
Attention rollout [7] generally outperforms GradCAM [32] in identifying relevant image
regions and the same pattern is found in the quality of the translations. Thus, we
conclude that our framework is not tied to a specific visual explanation method, and
allows the drop-in replacement of different visual explanation methods for guiding the
language generation.

4.3 Language Models

Our framework can be used with different language models without any changes in the
setup (c.f. Table 3 (right)). Here, we analyze the performance of ZS-A2T for different
language models. We demonstrate that our framework even outperforms other related
approaches when using a pre-trained GPT-2 language model. For example, it achieves
a Rouge-L value of 26.6 on VQA-X, whereas the previous best model with a GPT-2
backbone (MAGIC) only achieves 19.3 with the same language model. Furthermore,
we clearly outperform MAGIC on the n-gram metric Bleu-4 (3.6 vs. 1.0), as well as
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on Meteor, Rouge-L, Cider, and SPICE (see Table 1). This can be attributed to our
temperature κ, which allows for better balancing of the two terms in Equation (7).

Next, we analyze the impact of the size of the pre-trained language models. Our
ZS-A2T framework does benefit from larger, more powerful language models. The
performance increase with larger size is consistent across all metrics, e.g. Spice goes
from 7.1 to 9.2 when using the OPT model with 125M vs. 1.3B parameters. Using
the 6.7B model boosts the Spice performance to 10.5. This suggests that high-quality
candidate proposals are beneficial for the generated sentences. Additionally, it also
showcases a benefit of our training-free approach: Large or newer language models can
be swapped in without additional cost.

4.4 Prompt Ablations

Here, we analyze the effect of different input prompts for the pre-trained language model
on the generated text outputs (c.f. Table 4).

Prompt B4 M RL C S

〈q〉? the answer is 〈a〉 because 3.7 10.3 25.7 21.6 8.4
Q: 〈q〉? A: 〈a〉. E: 3.5 11.0 23.2 22.6 9.6
Q: 〈q〉\n? A: 〈x〉\n. E: 4.2 11.2 23.7 23.0 9.6
Explain the A: 〈q〉? The A is 〈a〉 because 6.9 13.0 32.3 31.7 9.9
A and Explain: 〈q〉?\n The A is 〈a〉 because 7.6 13.5 32.9 35.8 10.6

A and Explain: 〈q〉? The A is 〈a〉 because 8.5 13.8 34.2 38.1 10.5

Table 4: Ablating different input prompts on
VQA-X [15]. 〈q〉 and 〈a〉 are placeholders for
the question and answer. Q denotes “Ques-
tion”, A “Answer”, and E “Explanation”. \n
denotes a new line. We show the full prompt
templates in Section A of the supplementary
material.

Unsurprisingly, providing no task
description (row 1) in the input prompt
gives the worst outputs. Removing
the task description (“Answer and ex-
plain:”) yields significantly worse re-
sults with Bleu-4 decreasing from 8.5
to 3.7, suggesting that the task descrip-
tion is crucial for performance.

Inputting the task in a more struc-
tured way (“Question: 〈q〉? Answer:
〈a〉. Explanation:”) increases the lan-
guage quality only slightly compared
to using no task description. However,
the same structured prompt extended by
newline characters \n shows increased or similar metric values for all metrics. A further
improvement is achieved by using a meaningful task description (“Explain the answer:”)
in the input prompt. We used the best prompt (“Answer and explain:”) in ZS-A2T.
Impact of in-context generation (n-shot prompting). We analyze the effect of pre-
fixing the context with complete examples of questions, answers, and their respective
explanations. This enables the language model to better understand the task, as it can
see some examples before generating text [6].

Model n B4 M RL C S

ZS-A2T 0 8.5 13.8 34.2 38.1 10.5

ZS-A2T 1 9.8 14.5 34.8 42.7 11.7

ZS-A2T 5 11.9 15.3 37.5 49.6 12.4

Table 5: In-context learning with n
examples on the VQA-X dataset.

We experiment with up to n = 1 and n = 5
randomly sampled examples from the training set
of the respective dataset which are prepended to
the context (see Table 5). The full prompts for this
setup are included in Section E of the supplemen-
tary material.

Using a single example improves the language
quality already. For n = 1, the natural language
generation scores are on average 7.2% higher than
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What kind of place is this? 
The answer is train station 
because it's the only place 
the train goes.

What kind of vehicle is in 
the front of the photo? The 
answer is truck because it's 
a pickup.

What is he doing? The 
answer is sitting because he 
is tired.

Does the bus like the kids? 
The answer is yes because 
the bus is a school bus.

Can this animal be ridden? 
The answer is yes because 
it is already a horse.

What is this man doing? 
The answer is playing 
tennis because he is a 
tennis player.

Fig. 3: Qualitative results for ZS-A2T on VQA-X, showing the input image, question,
attention rollout [1] output, and generated text. Red indicates higher relevance. The
generated text indeed mentions the visual concepts detected by the VQA model. The
face regions have been deliberately occluded in this figure.

for n = 0. By just prefixing five in-context learning examples, the generation quality
increases on average by 19.3% over providing no examples. Qualitatively, we find that
the language model does not merely copy or modify the texts of the examples when
the question and/or answer match, but instead allows to adjust the candidate predictions
for the generated sentences accordingly. Additionally, the generated texts better match
the language biases in the datasets (e.g. on VQA-X many samples start with “the” or
“there”).

4.5 Qualitative Results

We provide qualitative examples for natural language translations generated with ZS-
A2T for VQA-X in Figure 3. The attention rollout map is superimposed onto the original
image. For each of the examples we show the question, predicted answer and generated
sentence that translates the attention patters into natural language. We can observe
that attention rollout, used for the attention-controlled guiding, selects relevant image
regions that plausibly correspond to the input question. In the bottom left example the
main attention is directed towards the horse. The generated sentences are fluent (due to
the pre-trained language model) and they refer to visual elements (due to the image-text
matching). Moreover, the framework can argue with common sense, i.e. it states that
a train station is the only place the train goes. It combines this prior knowledge from
the pre-trained language model with visual concepts detected by the VQA model, such
as identifying that the masked image shows a school bus. The capability to mention
visual elements stems from the attention controlled guiding of the language generation.
Additionally, the translations accurately describe the part of the image that the VQA
model used to answer the question (e.g. the pickup truck in the top left example).

An observed failure pattern can be seen in the bottom-right example in Figure 3. It
seems very plausible that the person would be tired. However, this sentence does not
refer to any visual information but instead uses common sense to explain the answer
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to the input question. In conclusion, the qualitative results in Figure 3 show that ZS-
A2T indeed generates text which mentions visual information contained in the attention
patterns that are extracted from the VQA model. Additionally, the generated sentences
are overall grammatically correct and fluent.

5 Limitations

Our proposed framework translates the internal attention of a VQA model into natural
language. As no datasets exist specifically for this task, we chose to automatically
evaluate our text translations of attention maps on textual explanation datasets. Due to
the inherent task differences, we do not expect our attention translations to perfectly
match the ground-truth explanations (e.g. in terms of writing style), explaining part of
the performance gap compared to supervised upper bounds in Table 1. Further research
into zero-shot translation methods and the creation of attention translation datasets will
be important to better understand attention-based models using natural language.

Our translation approach relies on (pre-)trained language models. As a result, the
faithfulness of the generated text with respect to the task model is hard to quantify. To
address this, we use an attention-controlled visual guiding component for aligning the
text generation with the VQA model.

Furthermore, we have only considered the ALBEF VQA model. However, our
approach could easily be extended to other models such as LXMERT [39] or ViLT [19].

Our attention-controlled guiding outperforms guiding with the full image by only
a slight margin (c.f. Table 2). This could be due to wrong internal reasoning of the
task model and attention rollout not identifying the areas causing this. This should
be addressed in future work, e.g. by using attention-perturbation to understand the
importance of image patches.

Lastly, we hypothesize that the relatively small changes in the ablation studies might
be due to the LLM already predicting a common sense translation for the question and
answer.

6 Conclusion

In this work, we introduce ZS-A2T, a zero-shot framework for translating the aggregated
attention in a VQA model to natural language. In particular, the language generation
is guided using the VQA model itself, by means of its internal attention combined
with its image-text matching capabilities for selecting word candidates in the language
generation. Our proposed method does not require any training and can be flexibly
used together with any language model to translate the visual attribution output for an
attribution method of choice. Our framework outperforms zero-shot image captioning
baselines on textual explanation datasets in the context of VQA.
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