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Abstract. High-quality data is crucial for the success of machine learn-
ing, but labeling large datasets is often a time-consuming and costly
process. While semi-supervised learning can help mitigate the need for
labeled data, label quality remains an open issue due to ambiguity and
disagreement among annotators. Thus, we use proposal-guided annota-
tions as one option which leads to more consistency between annotators.
However, proposing a label increases the probability of the annotators
deciding in favor of this specific label. This introduces a bias which we
can simulate and remove. We propose a new method CleverLabel for
Cost-effective LabEling using Validated proposal-guidEd annotations
and Repaired LABELs. CleverLabel can reduce labeling costs by up to
30.0%, while achieving a relative improvement in Kullback-Leibler di-
vergence of up to 29.8% compared to the previous state-of-the-art on a
multi-domain real-world image classification benchmark. CleverLabel of-
fers a novel solution to the challenge of efficiently labeling large datasets
while also improving the label quality.

Keywords: Ambiguous · data-centric · data annotation

1 Introduction

Labeled data is the fuel of modern deep learning. However, the time-consuming
manual labeling process is one of the main limitations of machine learning [54].
Therefore, current research efforts try to mitigate this issue by using unla-
beled data [55,4,56] or forms of self-supervision [33,19,22,18]. Following the data-
centric paradigm, another approach focuses on improving data quality rather
than quantity [34,39,15]. This line of research concludes that one single anno-
tation is not enough to capture ambiguous samples [8,10,3,47], where different
annotators will provide different annotations for the same image. These cases are
common in most real-world datasets [57,40,46,6] and would require multiple an-
notations per image to accurately estimate its label distribution. Yet, established
benchmarks such as ImageNet or CIFAR [24,23] are currently not considering
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(a) idea
(b) examples

Fig. 1: Illustration of distribution shift – We are interested in the ground-truth
label distribution (blue) which is costly to obtain due to multiple required an-
notations per image. Thus, we propose to use proposals as guidance during the
annotation to approximate the distribution more cost efficiently (red). However,
this distribution might be shifted toward the proposed class. We provide with
CleverLabel (green) a method to improve the biased label distribution (red) to
be closer to the original unbiased distribution (blue). Additionally, we provide
with SPA an algorithm to simulate and analyze the distribution shift. The con-
crete effects are shown in the right example for the MiceBone dataset on a public
benchmark [47] with the proposal marked by x.

this issue which significantly limits their use in the development of methods that
generalize well for ambiguous real-world data.

Acquiring multiple annotations per sample introduces an additional label-
ing effort, necessitating a trade-off between label quality and quantity. While
semi-supervised learning potentially reduces the amount of labeled data, the is-
sue of label quality still arises for the remaining portion of labeled data [28].
One possible solution for handling ambiguous data is using proposal guided an-
notations [41,11] which have been shown to lead to faster and more consistent
annotations [46,50]. However, this approach suffers from two potential issues: (1)
Humans tend towards deciding in favor of the provided proposal [20]. This default
effect introduces a bias, since the proposed class will be annotated more often
than it would have been without the proposal. Thus, an average across multiple
annotation results in a skewed distribution towards the proposed class as shown
in Figure 1. (2) Real human annotations are required during development which
prevents rapid prototyping of proposal systems.

We provide with CleverLabel and SPA two methods to overcome these two
issues. Regarding issue (1), we propose Cost-effective LabEling using Validated
proposal-guidEd annotations and Repaired LABELs (CleverLabel) which uses
a single class per image as proposal to speed-up the annotation process. As noted
above, this might skew the label distribution towards the proposed class which
can be corrected with CleverLabel. We evaluate the data quality improvement
achieved by training a network on labels generated by CleverLabel by comparing
the network’s predicted label probability distribution to the ground truth label
distribution, which is calculated by averaging labels across multiple annotations
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as in [47]. Improved data quality is indicated by a reduction in the difference
between the predicted distribution and the ground truth distribution. In addi-
tion, based on a previously published user study [49], we empirically investigate
the influence of proposals on the annotator’s labeling decisions. Regarding issue
(2), we propose Simulated Proposal Acceptance (SPA), a mathematical model
that mimics the human behavior during proposal-based labeling. We evaluate
CleverLabel and SPA with respect to their technical feasibility and their bene-
fit when applied to simulated and real-world proposal acceptance data. Finally,
we evaluate these methods on a real-world benchmark and we provide general
guidelines on how to annotate ambiguous data based on the gained insights.

Overall, our contributions commit to three different areas of interest: (1)
For improving label quality, we provide the novel method CleverLabel and show
across multiple simulated and real world datasets a relative improvement of up
to 29.8% with 30.0% reduced costs in comparison to the state of the art. (2) For
annotating real-world ambiguous data, we provide annotation guidelines based
on our analysis, in which cases to use proposals during the annotation. (3) For
researching of countering the effect of proposals on human annotation behavior,
we provide our simulation of proposal acceptance (SPA) as an analysis tool. SPA
is motivated by theory and shows similar behavior to human annotators on real-
world tasks. It is important to note that this research allowed us to achieve the
previous contributions. We provide a theoretical justification for SPA and show
that it behaves similarly to human annotators.

1.1 Related work

Data and especially high-quality labeled data is important for modern machine
learning [63,38]. Hence, the labeling process is most important in uncertain cases
or in ambiguous cases as defined by [47]. However, labeling is also not easy in
these cases as demonstrated by the difficulties of melanoma skin cancer classifi-
cation [36]. The issue of data ambiguity still remains even in large datasets like
ImageNet [24] despite heavy cleaning efforts [5,60]. The reasons for this issue can
arise for example from image artifacts like low resolution [43], inconsistent defi-
nitions [59], uncertainty of the data [1,45] or subjective interpretations [52,32].

It is important to look at data creation as part of the problem task because
it can greatly impact the results. Recent works have shown that differences can
depend on the aggregation of labels between annotators [62,8], the selection of
image data sources on the web [37], if soft or hard labels are used as label repre-
sentation [8,10,16,3] or the usage of label-smoothing [30,31,35]. In this work we
concentrate on the labeling step issues only. Simply applying SSL only partially
solves the problem as it tends to overfit [2]. Hence labeling is necessary and the
goal should be to label better and more.

A commonly used idea we want to focus on is proposal-based labeling. It is
also known as verification-based labeling [41], label-spreading [11], semi-automatic
labeling [29], or suggestion-based annotation [51]. [12] showed that proposal-
based data labeling increases both accuracy and speed for their user study
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Fig. 2: Average annotation probability of a proposed class with the proposal un-
known (GT, Unbiased) and known (Biased) to the annotators in four evaluated
datasets. The proposal increases the probability in all observed cases, revealing
a clear default effect in the investigated study. Its value is shown without any
further processing (Biased) and with the contributed correction (CleverLabel)
which consistently reduces the difference to the unbiased probabilities.

(n=54) which is in agreement with proof-of-concepts by [46,49]. The annota-
tion suggestions for the classification in diagnostic reasoning texts had positive
effects on label speed and performance without an introduction of a noteworthy
bias [51]. We continue this research for the problem of image classification and
show that a bias is introduced and how it can be modeled and reversed.

Acceptance or rejection of a proposal was previously modeled e.g. for the re-
view process of scientific publications [9]. They applied a Gaussian process model
to simulate the impact of human bias on the acceptance of a paper, but rely on a
per annotator knowledge. A simulation framework for instance-dependent noisy
labels is presented in [17,14] by using a pseudo-labeling paradigm and [21] uses
latent autoregressive time series model for label quality in crowd sourced label-
ing. Another aspect of labeling are annotation guidelines which can also have an
impact on data quality as [53] demonstrate for app reviews. We do not consider
guidelines as biases, instead they are a part of data semantics and use only real
annotations per image.This has the benefit of avoiding unrealistic synthetic pat-
terns as shown by [61] and simplifies the required knowledge which makes the
process more easily applicable.

Note that active learning [44] is a very different approach, in which the model
in the loop decides which data-point is annotated next and the model is incre-
mentally retrained. It is outside the scope of this article and it might not be
suited for a low number of samples with high ambiguity as indicated by [58].
Consensus processes [1,42] where a joint statement is reached manually or with
technical support are also out of scope.

2 Methods

Previous research on proposal-based systems [41,29,51] suggests an influence of
the default effect bias on the label distribution. While its impact is assessed as
negligible in some cases, it circumvents the analysis of an unbiased annotation
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Algorithm 1 Simulated Proposal Acceptance (SPA)

Require: Proposal ρx; a′x
i ∈ {0}

K

Calculate acceptance probability A

r ← random(0,1)
if r ≤ A then ▷ Accept proposal

a′x
i,ρx ← 1

else ▷ Sample from remaining classes
k ← sampled from P (Lx = k | ρx ̸= k)
a′x
i,k ← 1

end if

distribution [20] which can be desirable, e.g. in medical diagnostics. As we can
identify a significant bias in our own proposal-based annotation pipeline for
several datasets (see Fig. 2), two questions arise: how to mitigate the observed
default effect and how it was introduced?

In this section, we provide methods to answer both questions. Before we can
mitigate the observed default effect, we have to understand how it was intro-
duced. Thus, we introduce simulated proposal acceptance (SPA) with the goal
of reproducing the human behavior for annotating images with given proposals.
SPA can be used to simulate the labeling process and allow experimental analy-
sis and algorithm development before conducting large scale human annotations
with proposals. Building on this understanding, we propose CleverLabel which
uses two approaches for improving the biased label distribution to mitigate the
default effect: 1. a heuristic approach of class distribution blending (CB) 2. a the-
oretically motivated bias correction (BC). CleverLabel can be applied to biased
distributions generated by humans or to simulated results of SPA.

For a problem with K ∈ N classes let Lx and Lx
b be random variables mapping

an unbiased or biased annotation of an image x to the selected class k. Their
probability distributions P (Lx = k) and P (Lx

b = k) describe the probability that
image x is of class k according to a set of unbiased or biased annotations. As
discussed in the literature [30,31,35,10], we do not restrict the distribution of Lx

further e.g. to only hard labels and instead assume, that we can approximate it

via the average of N annotations by P (Lx = k) ≈
∑N−1

i=0

ax
i,k

N
with axi,k ∈ {0, 1}

the i-th annotation for the class k which is one if the class k was selected by the
i-th annotator or zero, otherwise. The default effect can cause a bias, P (Lx =
k) ̸= P (Lx

b = k) for at least one class k. Especially, for the proposed class ρx it
can be expected that P (Lx = ρx) < P (Lx

b = ρx).

2.1 Simulated Proposal Acceptance

Given both unbiased as well as biased annotations for the same datasets, we
analyze the influence of proposals on an annotator’s choice. We notice that a
main characteristic is that the acceptance probability increases almost linearly
with the ground truth probability of the proposal, P (Lx = ρx). If a proposal was
rejected, the annotation was mainly influenced by the ground truth probability
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of the remaining classes. This observation leads to the following model: For a
given proposal ρx, we calculate the probability A that it gets accepted by an
annotator as

A = δ + (1∗ − δ)P (Lx = ρx) (1)

with δ ∈ [0, 1]. 1∗ is an upper-bound for the linear interpolation which should
be close to one. The offset parameter δ can be explained due to the most likely
higher probability for the proposed class. We also find that this parameter is
dataset dependent because for example with a lower image quality the annotator
is inclined to accept a more unlikely proposal. In subsection 2.3, we provide more
details on how to calculate these values.

With this acceptance probability we can now generate simulated annotations
a′xi,k ∈ {0, 1} as in Algorithm 1 and describe the biased distribution similar to

the unbiased distribution via P (Lx
b = k) ≈

∑N ′−1
i=0

a′x
i,k

N ′
with N ′ describing the

number of simulated annotations. The full source-code is in the supplementary
and describes all corner cases e.g. P (Lxρx) = 1. An experimental validation of
this method can be found in the supplementary.

2.2 CleverLabel

Class distribution Blending (CB) A label of an image is in general sample de-
pendent but [7] showed that certain classes are more likely to be confused than
others. Thus, we propose to blend the estimated distribution P (Lx

b = k) with a

class dependent probability distribution c(k̂, k) to include this information. This

class probability distribution describes how likely k̂ can be confused with any
other given class k. These probabilities can either be given by domain experts
or approximated on a small subset of the data as shown in subsection 2.3. The
blending can be calculated as µP (Lx

b = k) + (1− µ)c(k̂, k) with the most likely

class k̂ = argmaxj∈{1,..,K}P (Lx
b = j) and blending parameter µ ∈ [0, 1]. This

approach can be interpreted as a smoothing of the estimated distribution which
is especially useful in cases with a small number of annotations.

Bias Correction (BC) In subsection 2.1, we proposed a model to use the knowl-
edge of the unbiased distribution P (Lx = k) to simulate the biased distribution
P (Lx

b = k) under the influence of the proposals ρx. In this section, we formulate
the reverse direction for correcting the bias to a certain degree.

According to Equation 1, for k = ρx we can approximate

B := P (Lx = ρx) =
A− δ

1∗ − δ
≈

|Mρx |
N ′

− δ

1∗ − δ
,

with Mρx
= {i | i ∈ N, i ≤ N ′, a′i,ρx

= 1} the indices of the annotations with an
accepted proposal. Note that we have to clamp the results to the interval [0, 1]
to receive valid probabilities for numerical reasons.
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Table 1: Used offsets (δ) for proposal acceptance
dataset Benthic CIFAR10H MiceBone Pig Plankton

User Study N/A 9.73% 36.36% N/A 57.84%
Calculated 40.17% 0.00% 41.03% 25.72% 64.81%

dataset QualityMRI Synthethic Treeversity#1 Treeversity#6 Turkey

User Study N/A N/A N/A N/A 21.64%
Calculated 0.00% 26.08% 26.08% 20.67% 14.17%

For k ̸= ρx we deduce the probability from the reject case of Algorithm 1

P (Lx = k | Lx ̸= ρx) = P (Lx
b = k | Lx ̸= ρx)

⇔
P (Lx = k, Lx ̸= ρx)

P (Lx ̸= ρx)
= P (Lx

b = k | Lx ̸= ρx)

⇔ P (Lx ̸= ρx) = (1−B)P (Lx
b = k | Lx ̸= ρx)

≈ (1−B) ·
∑

i ̸∈Mρx

a′i,k
N ′ − |Mρx

|
.

This results in an approximate formula for the original ground truth distribution
which relies only on the annotations with proposals. The joint distribution is
deducted in the supplementary. It is important to note that the quality of these
approximations relies on a large enough number of annotations N ′.

2.3 Implementation details

We use a small user study which was proposed in [49] to develop / verify our pro-
posal acceptance on different subsets. The original data consists of four dataset
with multiple annotations per image. We focus on the no proposal and class la-
bel proposal annotation approaches but the results for e.g. specific DC3 cluster
proposals are similar and can be found in the supplementary.

We calculated the ground-truth dataset dependent offset δ with a light weight
approximation described in the supplementary. An overview about the calculated
offsets is given in Table 1 in combination with the values of the user study where
applicable. Due to the fact, that it can not be expected, that this parameter can
approximated in reality with a high precision we use for all experiment except
otherwise stated, a balancing threshold µ = 0.75, 1∗ = 0.99 and δ = 0.1. More
details about the selection of these parameters are given in the supplementary.

The class distributions used for blending are approximated on 100 random
images with 10 annotations sampled from the ground truth distribution. For
a better comparability, we do not investigate different amounts of images and
annotations for different datasets but we believe a lower cost solution is possible
especially on smaller datasets such as QualityMRI. For this reason, we ignore
this static cost in the following evaluations. If not otherwise stated, we use the
method DivideMix [27] and its implementation in [47] to generate the proposals.
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(a) Synthetic (b) Real

Fig. 3: Label improvement (i.e. smaller Kullback-Leibler divergence (KL) [25])
in regard to the number of annotations per image. Annotations are created
synthetically with SPA (a) or with proposals in a real user study (b). Results
are clamped for visualization to the range 0 to 1.

With other methods the results are very similar and thus are excluded because
they do not add further insights. We include the original labels which are used
to train the method in the outputted label distribution by blending it with
the output in proportion to the used number of annotations. Please see the
supplementary for more details about the reproducibility.

3 Evaluation

We show that SPA and our label improvements can be used to create / re-
verse a biased distribution, respectively. In two subsections, we show that both
directions are technically feasible and are beneficial in practical applications.
Each section initially gives a short motivation, describes the evaluation metrics
and provides the actual results. Additionally, in the supplementary we provide
a comparison between our proposed simulation proposal acceptance and other
possible simulations. The analysis shows that our chosen simulation is optimal
in most cases while remaining easy to reproduce.

3.1 Label Improvement

We show that CB and BC lead to similar improved results on both simulated
and real biased distributions. This similarity between CB and BC illustrates the
practical benefit of SPA.

Metrics & Comparison To measure label improvement, we use the Kullback-
Leibler divergence (KL) [25] metric between the soft ground truth P (Lx = k)
and the estimated distribution. The input for the label improvement methods,
i.e. the skewed distributions, are generated either by our method SPA or by use
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of real proposal acceptance data from [49]. The reported results are the median
performance across different annotation offsets or datasets for the synthetic and
real data, respectively. For the real data, we used the calculated δ defined in
Table 1 for the simulation but as stated above δ = 0.1 for the correction in
CleverLabel. The method GT is the baseline and samples annotations directly
from P (Lx = k). The full results are in the supplementary.

Results If we look at the results on the synthetic data created by SPA in Fig-
ure 3a, we see the expected trend that more annotations improve results. While
using only CB (SPA+CB) is the best method for one annotation, it is surpassed
by all other methods with enough annotations. The baseline (GT), especially in
combination with blending (GT+CB), is the best method for higher number of
annotations. Our label improvement (CleverLabel) is in most cases the second
best method and blending is a major component (SPA+CB). The bias correction
(SPA+BC) improves the results further if ∼20 or more annotations are available.
Using the correct offset (CleverLabel + δ GT) during the correction which was
used in the simulation of SPA, is of lower importance. When we look at the full
results in the supplementary, wee see benefits of a better δ at an offset larger
than 0.4 and more annotations than 5. We conclude that label improvement is
possible for synthetic and real data and that the combination of CB and BC
with an offset of 0.1 is in most cases the strongest improvement.

Results on real annotations are shown in Figure 3b. For consistency we keep
the previous notation for CleverLabel, even though SPA was not used here
to generate biased distributions. The real results show similar trends to the
synthetic data. However, the baseline method without blending (GT) performs
stronger and some trends are not observable because we only have up to 12 an-
notations. The correct value for the offsets is even less important for real data,
likely because the effect is diminished by the difference of simulation and reality.

Overall, the results on synthetic and real data are similar. Thus, SPA can be
used as a valid tool during method development. It is important to point out
that the use of proposals will speed up annotations. Hence, different methods
should not necessarily be compared for the same number of annotations. E.g.
CleverLabel often performs slightly worse than GT in Figure 3b. Considering a
speedup of 2, we would have to compare CleverLabel with 5 annotations to GT
with around 3, as explained in the budget calculation in subsection 3.2. Due to
the similarity of the generated proposals with SPA and the real proposal data
from [49], we conclude that experiments can also be verified only on generated
proposals with SPA.

3.2 Benchmark evaluation

Metrics & Comparison We show the results for CleverLabel on [47]. We compare
against the top three benchmarked methods: Baseline, DivideMix and Pseudo
v2 soft. Baseline just samples from the ground-truth but still performed the best
with a high number of annotations. DivideMix was proposed by [27] and Pseudo
v2 soft (Pseudo soft) uses Pseudo-Labels [26] of soft labels to improve the labels.
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(a) Comparisons of benchmark results
with 100% in. sup.

(b) Pareto front visualization of bench-
mark results with 20,50, 100% in. sup.

Fig. 4: Left: Compares previous state-of-the-art out of 20 evaluated methods
reported in [47] (first three), new baseline (GT+CB) and our method (Clever-
Label) including different speedups S. Right: The marker and color define the
method, while the line style to the next node on the x-axis visualizes the initial
supervision, logarithmic scaled budgets, best viewed in color and digitally

We evaluate the Kullback-Leibler divergence (KL) [25] between the ground truth
and the output of the second stage (the evaluation with a fixed model) as well
as KL between ground truth and the input of the second stage (K̂L) (for details
about the stages please see the original benchmark [47]). We also provide an
additional ablation where we replaced the fixed model in the second sage with
a visual transformer [13]. The hyperparameters of the transformer were not
tuned for each dataset but kept to common recommendations. The speedup S
which can be expected due to using proposals depends on the dataset and used
approach. For this reason, we include this parameter in our comparison with the
values of 1 (no speedup), 2.5 as in [49] or 10 as in [50]. S is used to calculate
the budget as initial supervision per image (in. sup.) +( percentage annotated
of X· number of annotations per image )/S). In. sup. describes the percentage
of labeled data that is annotated once in phase one of the benchmark. For the
skewed distribution generation which is correct by CleverLabel, we used SPA
with the calculated δ in Table 1. For CleverLabel a heuristically chosen δ = 0.1
was used if not otherwise stated (+GTδ). The results are the median scores of
all datasets of the averages across three folds. Full results including mean scores
are in the supplementary.

Results We present in Figure 4a a comparison of our method CleverLabel with
previous state-of-the-art methods on the benchmark with an initial supervision
of 100%. Even if we assume no speedup, we can achieve lower KL scores than all
previous methods, regardless of the used number of annotations. Our proposed
label improvement with class blending can also be applied to samples from the
ground truth distribution (GT + CB) and achieves the best results in many
cases. Due to the fact that it does not leverage proposals it can not benefit from
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any speedups S. If we take these speedups into consideration, CleverLabel can
achieve the best results across all budgets except for outliers.

We investigate lower budgets where the initial supervision could be below
100% in Figure 4b. The full results can be found in the supplementary. If we
compare our method to the combined Pareto front of all previous reported re-
sults, we see a clear improvement regardless of the expected speedup. Two ad-
ditional major interesting findings can be taken from our results. Firstly, the
percentage of labeled data which is equal to the initial supervision for CleverLa-
bel (violet,blue,lightblue) is important as we see improved results from initial
supervision of 20 to 50 to 100%. This effect is mitigated with higher speedups
because then CleverLabel can achieve lower budget results not possible by other
initial supervisions. Secondly, we can improve the results further by using pro-
posals also on the unlabeled data (inc. un., red,orange,yellow) after this initial-
ization. This increases the budget because the percentage of labeled data is 100%
regardless of the initial supervision but results in improved scores. With S = 10
we can even improve the previous state of the art (Pseudo soft, in. sup 20%, 5
annotations) at the budget of 1.0 from 0.40/0.47 to 0.30/0.33 at a budget of 0.7
which is a relative improvement of 25%/29.8% with median/ mean aggregation.

In Table 2, we conduct several ablations to investigate the impact of individ-
ual parts of our method. Comparing KL and K̂L scores, we see similar trends
between each other and to subsection 3.1. Class blending (CB) is an important
part of improved scores but the impact is stronger for K̂L. A different blending
threshold (µ = 0.25) which prefers the sample independent class distribution
leads in most cases to similar or worse results than our selection of 0.75. Bias
Correction (BC) and the correct GT offset have a measurable impact on the K̂L
while on KL we almost no difference but a saturation at around 0.24 for all ap-
proaches most likely due the used network backbone. With a different backbone
e.g. a transformer [13] we can verify that BC positively impacts the results. With
CleverLabel (the combination of CB and BC) the scores are slightly decreased
for example from 0.17 to 0.16.

4 Discussion

In summary, we analyzed the introduced bias during the labeling process when
using proposals by developing a simulation of this bias and provided two methods
for reducing the proposal-introduced bias. We could show that our methods
outperform current state of the art methods on the same or even lower labeling
budgets. For low annotation budgets, we have even surpassed our newly proposed
baseline of class blending in combination with annotation without proposals.
Cost is already a limiting factor when annotating data and thus only results with
a better performance for a budget of less than one (which equals the current
annotation of every image once) can be expected to be applied in real world
applications. We achieved this goal with CleverLabel with speedups larger than
4 which is reasonable based on previously reported values [49].
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Table 2: Benchmark results ablation study across different number of annotations
per image, the number of annotations is given in the top row, first block of rows
KL result on normal benchmark, second block of rows K̂L on benchmark, last
block of rows KL results on benchmark but with ViT as backbone, all results are
median aggregations across the datasets, the best results per block are marked
bold per number of annotations
method 1 3 5 10 20 50 100

CleverLabel (ours) 0.29 ± 0.02 0.28 ± 0.01 0.26 ± 0.02 0.25 ± 0.01 0.27 ± 0.02 0.25 ± 0.02 0.24 ± 0.01

CleverLabel (+ GT δ) 0.30 ± 0.02 0.28 ± 0.01 0.27 ± 0.01 0.25 ± 0.02 0.24 ± 0.01 0.24 ± 0.01 0.24 ± 0.01

Only CB 0.34 ± 0.03 0.28 ± 0.01 0.27 ± 0.01 0.25 ± 0.02 0.25 ± 0.01 0.25 ± 0.02 0.25 ± 0.02
Only CB (µ=0.25) 0.33 ± 0.02 0.28 ± 0.01 0.33 ± 0.02 0.29 ± 0.01 - - -
Only BC - 0.30 ± 0.02 0.29 ± 0.02 0.26 ± 0.02 - - -

CleverLabel (ours) 0.68 ± 0.03 0.32 ± 0.01 0.25 ± 0.01 0.16 ± 0.00 0.11 ± 0.00 0.08 ± 0.00 0.07 ± 0.00
CleverLabel (+ GT δ) 0.68 ± 0.03 0.41 ± 0.01 0.29 ± 0.01 0.16 ± 0.00 0.10 ± 0.00 0.05 ± 0.00 0.04 ± 0.00

Only CB 0.68 ± 0.03 0.32 ± 0.01 0.25 ± 0.01 0.16 ± 0.01 0.12 ± 0.00 0.09 ± 0.00 0.08 ± 0.00
Only CB (µ=0.25) 0.55 ± 0.02 0.33 ± 0.01 0.29 ± 0.01 0.24 ± 0.01 - - -
Only BC - 1.22 ± 0.04 0.78 ± 0.02 0.36 ± 0.02 - - -

CleverLabel (+ GT δ) - 0.22 ± 0.01 - 0.18 ± 0.01 - - 0.16 ± 0.01

Only CB - 0.20 ± 0.01 - 0.18 ± 0.01 - - 0.17 ± 0.01

Fig. 5: Flowchart about how to annotate ambiguous data based on the questions
if an introduced bias is acceptable and if the expected speedup S is high (> 3)

Based on our research, how should one annotate ambiguous image classifi-
cation data? While there currently is no strategy for every case, the problem
can be broken down into the two major questions as depicted in Figure 5 and
was extended in [48]. Firstly, is a bias in the data acceptable? Be aware that in
CleverLabel all labels are human validated and that many consensus processes
already use an agreement system [1] with multiple reviewers. If a small bias is
acceptable you can directly use proposals and an optional correction like Clev-
erLabel. However, if a bias is not acceptable, the second major question is the
expected speedup by using proposals for annotating your specific data. In case
of a high expected speedup, the trade-off between the introduced bias and the
ability to mitigate it with BC and CB favors CleverLabel. For a low speedup,
we recommend avoiding proposals and to rely on class blending which is appli-
cable to any dataset if you can estimate the class transitions as described in
subsection 2.3. It is difficult to determine the exact trade-off point, because CB
improves the results with fewer (10-) annotations, BC improves the results at
above (20+) and both each other. Based on this research, we recommend a rough
speedup threshold of around three for the trade-off.

The main limitations of this work arise due to the fact that not more than four
datasets could be evaluated. We aim at a general approach for different datasets
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but this results in non-optimal solutions for individual datasets. Multiple exten-
sions for SPA like different kinds of simulated annotators would be possible but
would require a larger user study for evaluation. In subsection 3.1, we compared
our simulation with real data on four datasets, but a larger comparison was not
feasible. It is important to note that SPA must not replace human evaluation
but should be used for method development and hypothesis testing before an
expensive human study which is needed to verify results. We gave a proof of
concept about the benefit of bias correction with higher annotation counts with
a stronger backbone like transformers. A full reevaluation of the benchmark was
not feasible and it is questionable if it would lead to new insights because the
scores might be lower but are expected to show similar relations.

5 Conclusion

Data quality is important but comes at a high cost. Proposals can reduce this cost
but introduce a bias. We propose to mitigate this issue by simple heuristics and
a theoretically motivated bias correction which makes them broader applicable
and achieve up to 29.8% relative better scores with reduced cost of 30%. This
analysis is only possible due to our new proposed method SPA and results in
general guidelines for how to annotate ambiguous data.
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