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Abstract. Adversarial examples are samples that are close to benign
samples with respect to a distance metric, but misclassi�ed by a neural
network. While adversarial perturbations of images are usually computed
for RGB images, we propose perturbing straight on JPEG coe�cients
with the ability to individually control the perturbation applied on each
color channel and frequency. We �nd that perturbation as a function of
perceptual distance is most e�cient for medium frequencies, especially
when JPEG compression is used in defense. Overall, we show that at-
tacks on JPEG coe�cients are more e�cient than state-of-the-art meth-
ods that (mainly) apply their perturbation in RGB pixel space. This is
partly due to the use of the YCbCr color space, which allows to perturb
luma information exclusively, but also due to perturbing the cosine trans-
form coe�cients instead of pixels. Moreover, adversarial training using
such JPEG attacks with various frequency weighting vectors results in
generally strong robustness against RGB and YCbCr attacks as well.

Keywords: Adversarial Attacks · JPEG · Perceptual Distance.
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Fig. 1. Adversarial examples with minimum perturbation to force a misclassi�cation on
a Densenetjq50 for Cifar10 (top) and Imagenet (bottom) for attacks on RGB, YCbCr

pixels and JPEG coe�cients (jq 100) using di�erent frequency weighting vectors. The
LPIPS distance is given below each image.
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1 Introduction

There has been a large amount of research in recent years on image adversarial
attacks and how to defend neural networks against them [3,8,18,29]. Generally,
images are represented using RGB pixels and while there has been some research
on attacks that try to bypass JPEG compression in defense or when saving the
adversarial images [32,33], the main perturbation is mostly still applied in RGB
representations. Perturbing straight on JPEG coe�cients has only been used
as an example of an unforeseen threat model [15,19], but never been analyzed
in detail, altough there are several advantages. Adversarial examples exist be-
cause neural network classi�ers are relying on properties of the data di�erent
from those used by humans. In contrast, lossy image compression algorithms
like JPEG aim to remove properties of the data which are imperceptible for
humans. Thus, a representation of images which separates perceivable from im-
perceptible parts of the data and enables to control the applied perturbations
across frequencies could be a better basis for generating adversarial examples as
well as for an adversarial defense.

JPEG compression is known to be a weak defence strategy against adversar-
ial attacks [5,6,10,28]. Attacking straight on JPEG coe�cients could increase the
success on nets that use JPEG compression in defense, as it could prevent that
perturbations are removed during JPEG compression. Moreover, using a YCbCr

representation of the image pixels, which is also part of the JPEG compression
pipeline, is bene�cial for both adversarial attacks and adversarial defense [25].
This leads us to the following questions: Can perturbing straight on JPEG coef-
�cients result in adversarial attacks that are more e�cient, i.e. show the same or
higher success while being perceptually closer to the original? Can such JPEG
attacks indeed bypass JPEG compression with more e�ciency than state-of-the-
art attacks? Is there a di�erence between the impact of low-, medium- and high-
frequency perturbations on JPEG adversarial attacks? And can these di�erences
be used to achieve more generalising robustness with adversarial training?

Our work is structured as follows: All necessary background on adversarial
attacks and defenses, JPEG compression and perceptual metrics is given in sec-
tion 2. In section 3, we explain our attack method in detail. Section 4 includes
the analysis of the e�ciency of our approach in comparison with state-of-the-art
attacks, followed by a conclusion in section 5. Our implementation is available
at https://github.com/KoljaSmn/jpeg-adversarial-attacks.

2 Related Work

2.1 Adversarial Attacks

Following Szegedy et al. [34], given an original input image x with the corre-
sponding ground-truth label y, an image x′ = x + δ is called an adversarial
example, if and only if D(x, x′) ≤ ε ∧ f(x′) ̸= y, where ε is a hyperparameter
limiting the perturbation δ on the original image, D is a distance metric and f
is the neural net's output class for a given input. Usually, Lp norms are used

https://github.com/KoljaSmn/jpeg-adversarial-attacks
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as distance metric. We focus on untargeted attacks that are limited by the L∞
norm, i.e. attacks that search for an adversarial example x′ with a maximum
pixel-wise perturbation of ε: L∞(x′ − x) = maxi |x′

i − xi| ≤ ε. For generating
adversarial examples, we use the Basic Iterative Method (BIM) [18] which
iteratively updates the image in the direction of the loss gradient by step size α,

x′
t = Clipx,ε(x

′
t−1 + α · sign(∇x′

t−1
J(x′

t−1, y))), (1)

where J is the categorical crossentropy loss for some source model.

2.2 Perceptual Metrics

Usually, Lp norms measured in the images' RGB representations are used to
evaluate the success of adversarial attacks. These are not really suitable for
measuring perceptual di�erences in real-world scenarios though: First, the RGB
color model is based more on physiological properties [26], than on perceptual
ones, and it is not perceptually uniform [21]. Second, Lp norms only compute
pixel-wise di�erences and cannot measure structural di�erences.

Recently, there has been a development towards using perceptually more
meaningful distances for measuring and minimizing the distortions created by
adversarial attacks: Zhao et al. [39] minimize the CIEDE2000 distance which has
been designed to measure perceived color distances [20]. Others have used the
Learned Perceptual Image Patch Similarity (LPIPS) to either measure or mini-
mize the perceptual distortion [13,19]. LPIPS is a perceptual loss function that
was proposed by Zhang et al. [38] and uses the di�erences between activations of
some convolutional layers in a pretrained network. By relying on di�erences in
feature spaces, LPIPS can also measure structural di�erences and it has shown
to be closer to human perception than pixel-wise distance metrics [38].

The superiority of LPIPS as a perceptual metric can also be illustrated us-
ing a simple example, shown in Figure 2, where every pixel in the background
was disturbed by adding/subtracting 3 from every RGB channel in two di�erent
patterns. On the left, the direction was arranged as a chessboard and on the
right it was chosen randomly. The randomly arranged perturbation is not visible
without zooming in, while the left image is clearly distinguishable. As the back-
ground contains the same pixels on both perturbed images, but the arrangement
varies, pixel-wise distances like CIEDE2000 L2 do not vary, while LPIPS does,
corresponding to human perception. In our experiments, we use a VGG-16 net
and train the LPIPS model in the same way as in the original paper [38].

2.3 JPEG Compression and JPEG-resistant attacks

JPEG compression builds on the idea that high frequency image content can be
altered more before becoming noticeable. In addition to that it takes advantage
of human color perception being of lower resolution than human brightness per-
ception. JPEG compression consists of the following steps: First, the pixels are
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Fig. 2. The reference image's unicoloured background was perturbed with some noise,
by adding or subtracting 3 from each RGB channel value. The arrangement of sub-
tracting/adding varies between both patches.

transformed from RGB to YCbCr color space. Second, usually the color chan-
nels are subsampled. Third, the three channels are each divided into blocks of
size 8x8 pixels which are then replaced by their 64 discrete cosine transform
(DCT) [1] coe�cients. The main part of the lossy data reduction follows in step
four, where the coe�cients are divided by some quantization thresholds, which
depend on the JPEG quality, and then quantized.

There has been little research on attacks that perturb JPEG coe�cients or
try to bypass JPEG compression. Kang et al. used JPEG attacks as an example
of an unforeseen threat model, but do not give much detail on their attack and
do not analyze the attack's success for di�erent parameters [15].

Shin & Song [33] proposed an attack that perturbs the images' RGB pixel rep-
resentation, but includes an approximation of JPEG compression in the source
model. The perturbation of their BIM variant is then given by

x′
t = x′

t−1 + α · sign(∇x′
t−1

J(JPEGjq
approx(x

′
t−1), y)), (2)

where JPEGjq
approx(x) is an approximation of JPEG compression, where the

rounding during the quantization step is replaced by a di�erentiable approxi-
mation. They also propose an ensemble attack that combines gradients using
di�erent JPEG qualities.

Shi et al. [32] proposed an attack that �rst applies an RGB attack (e.g. BIM)
and then compresses the image using a fast adversarial rounding scheme1 that
performs JPEG compression but does not round every coe�cient to the nearest
integer, but the most important ones in the gradient's direction.

While both approaches can make the perturbation more robust towards
JPEG compression, the perturbation is still applied in the RGB pixel represen-
tation though. As our attack perturbs straight on JPEG coe�cients, it does not
have to include an approximation of JPEG compression in the target model or

1 For targeted attacks, they also propose an iterative rounding scheme. As we only
consider untargeted attacks, we will only use the fast adversarial rounding.
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make the perturbation robust against JPEG compression using a sophisticated
rounding scheme. Thus, our approach is technically straightforward.

2.4 Adversarial Defenses

Goodfellow et al. introduced the concept of defending a neural network against
adversarial attacks by adversarial training [8]. The simple idea is to use adversar-
ial examples constructed on the network itself in addition to benign samples for
training. In this work, we will use the adversarial training approach by Madry
et al., that uses BIM images during training [22].

Since adversarial attacks rely on adding small perturbations to images, other
defense methods try to alter or remove such perturbations. I.e. it has been
shown, that JPEG compression can reverse the drop in classi�cation accuracy
for FGSM [8] attacks as long as the maximal perturbation ε is small enough [6].
It is also known, that training on images of di�erent JPEG compression rates
can be used as defense strategy [5,10], although these defenses are only regarded
as weak defense strategies [28].

2.5 Adversarial Attacks and Defenses from a Frequency Perspective

By selectively adding noise to di�erent frequencies, Tsuzuku and Sato showed
that neural networks are sensitive to the directions of fourier basis functions [36].
Guo et al. and Sharma et al. both masked gradients for high DCT frequencies
during RGB pixel perturbation [9,31] and argue that low-frequency perturba-
tions can circumvent certain defenses. Both do not use perceptual distances to
evaluate the attacks though, but RGB L2 distances, or respectively, the input
parameter ε, which does not re�ect the structural di�erence of low- and high-
frequency perturbations though. Yin et al. argue that adversarial training does
increase the robustness on high DFT frequencies, but leads to vulnerability on
low frequencies. They also �nd that neural networks can be successfully trained
using high-frequency information that is barely visible to human [37].

Bernhard et al. [2] showed that networks that rely on low frequency informa-
tion tend to achieve higher adversarial robustness. The intuition behind this is
that humans mainly rely on low-frequency information as well. A classi�er that
uses low-frequency information instead of high frequency components that are
barely visible for humans, should thus be more aligned to the human perception;
a network relying on exactly the same information as humans, would contra-
dict the existence of adversarial examples. Additionally, Bernhard et al. found
that adversarial perturbations are ine�cient when limited to high frequencies.
Similarly, Maiya et al. [23] state that adversarial perturbations are not neces-
sarily a high-frequency phenomenon, but their distribution across frequencies is
dataset-dependent. For Cifar10 [17], the undefended models are most sensitive
on high frequencies, while for Imagenet [30] they are more sensitive for lower
frequencies. For the adversarially trained models the robustness across the whole
spectrum increases and in case of Cifar10 the sensitivity even reverses towards
low frequencies.
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However, none of these works [2,9,23,31,36,37] are JPEG-related, as they still
perturb RGB pixels and perform the DCT/DFT on the whole image and not on
8 × 8 blocks. Another di�erence is that they mask some frequencies, while we
just weight the perturbations di�erently.

3 Proposed Method

Let xjq = (Y,Cb, Cr) be a quantized JPEG image of quality jq. For an im-
age of shape h × w, the luma channel Y has shape (h/8, w/8, 64), and the
chroma channels also have shape (h/8, w/8, 64), as we do not use chroma sub-
sampling in our attacks in order to focus on the distortion created by the ad-
versarial perturbation. To enable individual control over the perturbation made
on each channel, we de�ne three L∞-balls that limit the relative perturbation
made on each channel. For that, we de�ne nine variables, three relative per-
turbation budgets εrelY , εrelCb

, εrelCr
∈ R≥0, relative step sizes αrel

Y , αrel
Cb
, αrel

Cr
∈ R≥0

and three weighting vectors λY , λCb
, λCr ∈ [0, 1]64, where the ε values control

the amount of perturbation made on each channel and the λ values determine
how much perturbation is permitted for every DCT frequency component. From
these relative budgets and the masking vectors, we then compute absolute limits

εabsY , εabsCb
, εabsCr

∈ R(h/8)×(w/8)×64
≥0 by

εabsY = εrelY · λY · |Y |, εabsCb
= εrelCb

· λCb
· |Cb|, εabsCr

= εrelCr
· λCr

· |Cr|. (3)

The absolute step sizes αabs
Y , αabs

Cb
, αabs

Cr
∈ R(h/8)×(w/8)×64

≥0 are computed corre-
spondingly. For BIM, a single perturbation step is de�ned by

Y ′
t = Y ′

t−1 + sign(∇Y ′
t−1

(J(rgb(x′
t), y))) · αabs

Y

Cb
′
t = Cb

′
t−1 + sign(∇Cb

′
t−1

(J(rgb(x′
t), y))) · αabs

Cb

Cr
′
t = Cr

′
t−1 + sign(∇Cr

′
t−1

(J(rgb(x′
t), y))) · αabs

Cr
, (4)

where rgb(x) denotes the transformation from JPEG to unquantized RGB data
for JPEG image x. The JPEG to RGB conversion is implemented in a di�er-
entiable way using standard convolutional layers with �xed weights. After each
update step, the coe�cients are clipped to be within each L∞-ball. After T
iterations, the coe�cients are rounded to the nearest integer.

4 Experiments and Results

We assume a black-box setting in which a ResNet [11] is used as a source model,
and several, partially defended, DenseNets [12] are used as transfer models.
DensenetjqQ denotes a normally trained DenseNet, where the input is JPEG
compressed with quality Q at inference time. DensenetRGB

M denotes a net that
is adversarially trained with Madry et al.'s method [22] that uses RGB BIM to
create adversarial images during training. In our experiments, we use all 10000
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test images for Cifar10 and a 10000 image subset of the validation dataset for
Imagenet. We incrementally increase the perturbation bound ε or, respectively,
εrelY , εrelCb

, εrelCr
, 2 measure the success rates and perceptual distances for each at-

tack and then, plot the success rate in dependence of the perceptual distance,
which we call the e�ciency of an attack.3

4.1 Varying Luma and Chroma Perturbations

In our �rst experiment, we compare the success of our JPEG attacks across color
channels. Figure 3 illustrates the attack e�ciency on each channel. εall implies
that the same εrelY = εrelCb

= εrelCr
is used for all three channels. The other attacks

are performed on just one channel each, while the other ε's are set to 0.
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Fig. 3. LPIPS e�ciency for unmasked (λall = 1) BIM on a Densenetjq50.

The results con�rm Pestana et al. [25], in that adversarial perturbations are
much more e�cient in the luma than in the chroma channels for both datasets.
This is in accordance to neural networks being known to primarily classify based
on the image's shapes and textures [7,25]. As luma attacks perform best, our
JPEG attacks will only perturb the luma channel in the following.

4.2 Varying Perturbations across Frequencies

Up to now, we applied the same relative perturbation bounds to all JPEG coef-
�cients of one channel although their impact may be very di�erent. One could
assume that high frequency perturbations are perceived as noise and are thus less
visible than low frequency perturbations. This is in accordance to the behaviour
of JPEG compression, which preferably removes high frequency components.
On the other hand, low frequency components are perceived as less prominent
when high frequency components are visible at the same time, which is the basis
of e.g. hybrid image optical illusions [24]. We test this in a second experiment
by applying di�erent weighting vectors λY that are illustrated in �g. 4. The

2 The step sizes are chosen as α = ε
T
for RGB and correspondingly for JPEG attacks.

We always use T = 10 iterations in our experiments.
3 For comparison, attacking images with RGB FGSM/BIM and ε = 8 results in an
average CIEDE2000 L2 distance of 203.61/107.17 and a LPIPS distance of 0.85/0.37.
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(a) qm ascent (b) medium (c) qm descent (d) unmasked

Fig. 4. DCT weighting vectors (λ). Frequencies increase from top-left to bottom-right.

qm descent/ascent weighting vectors are based on the luma quantization matrix
for JPEG quality 50, the medium vector was determined by applying absolute
perturbations using the qm descent vector and then extracting the resulting rel-
ative perturbations. Figure 5 summarizes the results of the experiment for both
datasets. For Cifar10, we observe that the ascent weighting vector that concen-
trates perturbations on high frequencies is the most e�cient on the undefended
DenseNet, closely followed by the medium masking vector. When Densenetjq50

is considered, the ascent vector becomes least successful because the perturba-
tion made on high frequencies is removed during JPEG compression. The JPEG
quality used for computing the qm descent/ascent weighting vectors does only
slightly in�uence the resulting weighting vectors and thus, the attack's e�ciency.
I.e., weighting vectors that use JPEG qualities that are di�erent from the one
used in defense (50 in this case) do not yield a signi�cant reduction in e�ciency.
On the adversarially trained net, the order is reversed compared to the unde-
fended net. As already stated by Yin et al. [37], adversarial training does lead
to more robustness on high frequencies but vulnerability on low ones, at least
for Cifar10.

For Imagenet, the di�erence between the e�ciency of low-frequency and
high-frequency perturbations is smaller which indicates that the undefended net
is indeed more sensitive towards low-frequency perturbations than nets trained
on Cifar10 as already found by Maiya et al. [23], but the medium vector shows
even more success. Again, we observe that using JPEG compression in defense
decreases the success of high-frequency perturbations as the ascent vector's ef-
�ciency is decreased, while the e�ciency of medium and low frequency pertur-
bation is less a�ected by JPEG compression. While a lower JPEG quality could
reduce their e�ciency too, the relative results should remain the same. Here, we
can not observe any outstanding vulnerabilities resulting from the adversarial
training as all vectors are similarly successful.

Contrary to the general assumption that adversarial perturbations are mainly
a high-frequency phenomenon, the experiments show that medium frequency
perturbations are the most e�cient (Imagenet), or at least approximately on
par with the best other perturbations (Cifar10). Note that these observation
should apply for perturbations in the medium frequencies in general and we do
not state that our selection of the medium vector is optimal. The results also
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Fig. 5. LPIPS e�ciency of JPEG luma BIM attacks.

correspond to �ndings in steganography and watermarking [4,14,16,27], where
information is preferably added in medium frequency components since these
have less contribution towards energy and perceived image details. Following
these results, we will use the medium weighting vector in the following experi-
ments for comparison with state-of-the-art attacks.

4.3 Comparison of Adversarial Attacks on JPEG Coe�cients to

YCbCr and RGB Pixel Representations

In this section, we will analyze whether our attacks straight on JPEG coe�cients
are advantageous over attacks on pixel representations, such as the usual RGB
attacks. However, to determine whether the advantages of JPEG attacks are due
to using the YCbCr color model or using DCT coe�cients, our experiments also
include pure YCbCr pixel attacks, where we only perturb the luma channel but
perform absolute perturbations on pixel values similar to standard RGB attacks.

The results (�g. 6) show, that our JPEG attack is more successful than the
YCbCr and RGB attack on both Cifar10 and Imagenet, especially on the net
defended with JPEG compression. There are two main reasons for the superiority
of the JPEG approach: First, as shown in section 4.1 and already stated by
Pestana et al. [25], adversarial attacks are much more e�ective when only luma
information is perturbed, as the shape and textures that neural networks rely on
for classi�cation are mainly located here. Attacking RGB pixels always implies
that color information is also changed, resulting in more perceptual di�erence
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than needed and thus, less e�ciency. Second, perturbing JPEG coe�cients allows
to control how perturbations are distributed across frequencies and �xing 0-
coe�cients (as being done implicitly by our approach) avoids perturbing high-
frequency information that would be removed during the JPEG compression in
defense anyway. This proofs that the advantage of attacking on JPEG coe�cients
is not exclusively reasoned by the use of the YCbCr color model, but also because
of the DCT representation.

JPEG medium RGB YCbCr
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Fig. 6. LPIPS e�ciency of JPEG (jq 100), RGB and YCbCr BIM.

The DensenetRGB
M s are basically robust against the RGB attack, while they

still are vulnerable towards our JPEG attack. This alone is not surprising as
this RGB attack is what is used during the adversarial training and adver-
sarially trained nets are known to be vulnerable towards unseen threat mod-
els [15,19], but the di�erence between the JPEG and the YCbCr attack is worth
mentioning as both are attacking on luma exclusively. For Cifar10, we also
adversarially trained a net with JPEG εall and εY attacks using our four fre-
quency vectors with probability ratios medium:ascent:descent:unmasked 8:5:4:1.
The εall-attacks are weighted twice as much as the εY -attacks. The JPEG ad-
versarial training leads to high overall robustness regarding not only JPEG but
also YCbCr and RGB attacks: the success rates for ∼ 0.9 LPIPS distance are
8.60% (JPEG medium), 2.14% (YCbCr) and 6.01% (RGB), compared to 32.53%,
10.72% and 3.97% for an RGB defense. However, the clean accuracy drops from
82.09% (DensenetRGB

M ) to 74.74%, as expected, since "robustness may be at odds
with accuracy" [35]. The adversarial training using JPEG attacks leads to the
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(a) DensenetRGB
M

(b) DensenetJPEG
M

Fig. 7. Starting from unicolored images (R=G=B=128), each model's loss was mini-
mized in 100 steps of gradient descent for some of Cifar10's classes.

net relying on low-frequency information even more than the DensenetRGB
M , as

�g. 7 illustrates. The reliance on the general composition of images and abstract,
coarse structures rather than super�cial high-frequency information results in
better robustness against small perturbations and better generalization.

As the examples in Figure 1 show, RGB and YCbCr pixel attacks often
result in clearly visible colour or high-frequency noise, while the perturbations
from the JPEG medium attack are generally less visible. One problem of our
JPEG attacks is that some 8× 8 JPEG blocks are clearly visible when there are
too strong perturbations on low frequencies.

4.4 Comparison with JPEG-resistant attacks

One of our main motivations for proposing attacks straight on JPEG coe�cients
was bypassing JPEG compression in defense, or when saving the adversarial
images. Thus, we compare our approach to Shin & Song's [33] and Shi et al.'s [32]
attacks, for three JPEG qualities used in attack. The experiment is conducted
for both Cifar10 and Imagenet (�g. 8). As Shin & Song return uncompressed
images, we compress them to the same JPEG qualities for comparison.

On both datasets, we observe that our attack is superior compared to Shi
et al.'s approach for all three JPEG qualities. Although the fast adversarial
rounding in their attack makes the perturbations more robust towards JPEG
compression for a given ε, it also induces a signi�cant perceptual distortion
even if ε = 0. Additionally, their attack still perturbs mainly on RGB pixels
which results in color perturbations that are partially removed during the chroma
subsampling in the JPEG compression in defense anyway.

In comparison with Shin & Song's approach the results are less clear. As
it always shows better performance, we only include the ensemble attack from
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Fig. 8. LPIPS e�ciency on the Densenetjq50 and the undefended (ud) DenseNet for
BIM attacks, for di�erent JPEG qualities used in attack.

Shin & Song [33] in our experiments.4 For very small perturbations, the attacks
from Shin & Song show more e�ciency, while for larger perturbations our at-
tack is often more e�cient, especially on Imagenet. Moreover, the ensemble
attack's e�ciency is signi�cantly worse than ours when the target model is un-
defended. We explain this by the chroma subsampling that is used in the attack
but not in the undefended net. Thus, the attack could induce color perturba-
tions that are ideal to fool nets that use chroma subsampling in defense. In
a black-box setting though, it would be unknown whether and how the target
model is defended. Therefore, generalizing for a number of target models is an
important measure of an attack's success in the black-box setting. In total, our
JPEG attack though seems to generalize very well, as it performs well on both
undefended and defended nets, and e�ciency barely di�ers between the attack
qualities used in attack. Another advantage is our attack's smaller computation
time: On a NVIDIA P6000, attacking the whole Cifar10 test dataset with 10
iterations took only 72s compared to 218s for Shin & Song's ensemble attack.

As the sample images in Figure 9 show, both Shin & Song's and Shi et al.'s
attacks show signi�cant perturbations (colour noise, high-frequency noise and/or
block artifacts), while the medium frequency attack shows less perceptual dis-
tortions and a smaller LPIPS distance.

4 For Shin & Song's ensemble attack, jpeg qualities 90, 75 and 50 were used for all
three sub�gures.
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Fig. 9. Adversarial examples with minimum perturbation to force a misclassi�cation
on a Densenetjq50 for Cifar10 (top) and Imagenet. Images are created on a ResNet.
The LPIPS distance is given below each image.

5 Conclusion

We introduced a JPEG version of the Basic Iterative Method that allows
individual control over the allowed perturbation on each channel and frequency.
We found that applying perturbations straight on JPEG coe�cients has several
advantages that lead to superiority over perturbing straight on RGB or YCbCr

pixels:

First, JPEG uses the YCbCr color model which is well-suited for adversarial
attacks as it separates chroma and luma information which is often more impor-
tant for neural networks and thus more e�cient to perturb than color channels.

Second, the ability to control the perturbation applied on each frequency
allowed us to �nd that adversarial perturbations on medium frequencies are
often more e�cient than when they are concentrated on the highest frequencies,
especially when JPEG compression is used in defense.

Third, perturbing straight on JPEG coe�cients and �xing 0-coe�cients al-
lows to apply only perturbations that are not removed during JPEG compression
such that it can often bypass JPEG compression more e�ciently than state-of-
the-art attacks.

Fourth, our approach is much simpler than other methods which try to by-
pass JPEG compression [32,33], but still generally outperforms them regarding
success rate.

Finally, we observed that RGB adversarial training can indeed lead to vul-
nerability on low frequencies, while adversarial training using multiple, weighted
JPEG attacks results in strong overall robustness � not only against JPEG at-
tacks, but also against RGB and YCbCr pixel attacks.

Thus, adversarial perturbations straight on JPEG coe�cients leads to more
successful attacks and can be used for a generally robust defence strategy.
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