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Abstract. Object detection on Lidar point cloud data is a promising
technology for autonomous driving and robotics which has seen a signif-
icant rise in performance and accuracy during recent years. Particularly
uncertainty estimation is a crucial component for down-stream tasks and
deep neural networks remain error-prone even for predictions with high
confidence. Previously proposed methods for quantifying prediction un-
certainty tend to alter the training scheme of the detector or rely on
prediction sampling which results in vastly increased inference time. In
order to address these two issues, we propose LidarMetaDetect (LMD),
a light-weight post-processing scheme for prediction quality estimation.
Our method can easily be added to any pre-trained Lidar object detec-
tor without altering anything about the base model and is purely based
on post-processing, therefore, only leading to a negligible computational
overhead. Our experiments show a significant increase of statistical reli-
ability in separating true from false predictions. We propose and evalu-
ate an additional application of our method leading to the detection of
annotation errors. Explicit samples and a conservative count of annota-
tion error proposals indicates the viability of our method for large-scale
datasets like KITTI and nuScenes. On the widely-used nuScenes test
dataset, 43 out of the top 100 proposals of our method indicate, in fact,
erroneous annotations.

Keywords: Lidar point cloud · object detection · uncertainty estimation
· annotation quality.
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DNN objectness score LMD score

Fig. 1: Prediction of a Lidar point cloud object detector with the native ob-
jectness score (left) and LMD meta classifier scores (right) and corresponding
camera images below. Ground truth annotations are depicted in pink while pre-
dictions are color-coded from red (low confidence) to green (high confidence).
Detections based on the objectness score are highly threshold-dependent and
may lead to false positive detections. Detections based on LMD scores are more
reliable and separate true from false predictions more sharply.

1 Introduction

In recent years, deep learning has achieved great advances in the field of 3D
object detection on Lidar data [9,21,22,24]. Deep neural network (DNN) archi-
tectures for this task are well-developed, however, there is little work in the area
of uncertainty quantification (UQ) for such models [15,2,11,12,23]. UQ is crucial
for deployment of DNN-based object detection in the real world, since DNNs as
statistical models statistically make erroneous predictions. Down-stream algo-
rithms are supposed to further process the predictions of perception algorithms
and rely on statistically accurate and meaningful UQ. Aleatoric uncertainty is
usually estimated by adding variance parameters to the network prediction and
fitting them to data under a specific assumption for the distribution of resid-
uals [2,12,11,5,4]. Such approaches usually alter the training objective of the
detector by appealing to the negative log-likelihood loss for normally distributed
residuals. Epistemic uncertainty is oftentimes estimated via Monte-Carlo (MC)
dropout [2] or deep ensembles [23]. In such approaches, model sampling leads to
a significant increase in inference time. Inspired by lines of research [19,16] in
the field of 2D object detection on camera images, we develop a framework for
UQ in 3D object detection for Lidar point clouds. This approach does not alter
the training objective and can be applied to any pre-trained object detector and
does not require prediction sampling. Our framework, called LidarMetaDetect
(short LMD), performs two UQ tasks: (1) meta classification, which aims at es-
timating the probability of a given prediction being a true positive vs. being a
false positive; (2) meta regression, which estimates the localization quality of a
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prediction compared with the ground truth. Note that, outside the context of
UQ for DNNs, the terms meta classification and meta regression refer to differ-
ent concepts, see [10] and [20], respectively. LMD operates as a post-processing
module and can be combined with any DNN without modifying it. Our methods
learn on a small sample of data to assess the DNN’s reliability in a frequentist
sense at runtime, i.e., in the absence of ground truth. In essence, we handcraft a
number of uncertainty scores on bounding box level, by which we convert both
UQ tasks into structured machine learning tasks. To the best of our knowledge,
our method is the first purely post-processing-based UQ method for 3D object
detection based on Lidar point clouds. We conduct in-depth numerical studies
on the KITTI [6], nuScenes [1] as well as a propriety dataset. We include com-
parisons of our methods with baseline methods on common uncertainty quantifi-
cation benchmarks, ablation studies of relevant parameters and the relevance of
our uncertainty features. This is complemented with down stream tasks where
(1) we demonstrate that our UQ increases the separation of true and false pre-
dictions and leads to well-calibrated confidence estimates and (2) we show that
our UQ can be utilized for the detection of erroneous annotations in Lidar ob-
ject detection datasets. We evaluate our method’s annotations error detection
capabilities by reviewing its proposals on moderate samples from KITTI and
nuScenes. Our contributions can be summarized as follows:

– We develop the first purely post-processing based UQ framework for 3D
object detection in Lidar point clouds.

– We compare our UQ methods to baselines and show that they clearly out-
perform the DNN’s built-in estimates of reliability.

– We find annotation errors in the most commonly used publicly available
Lidar object detection datasets, i.e., KITTI and nuScenes.

We make our code publicly available at https://github.com/JanMarcelKezmann/
MetaDetect3D.

2 Related Work

In recent years, technologically sophisticated methods such as perception in Li-
dar point clouds have received attention in the UQ branch due to their po-
tential industrial relevance in the autonomous driving sector. Methods for 3D
object detection roughly fall into the categories of aleatoric and epistemic UQ.
Aleatoric UQ methods usually build on estimating distributional noise by adding
a variance output for each regression variable while epistemic UQ methods uti-
lize some kind of model sampling either appealing to MC dropout or deep en-
sembles. Meyer et al. [11] estimate aleatoric uncertainty by a two-dimensional
discretization scheme over the Lidar range and introducing a variance-weighted
regression loss for a multi-modal distributional prediction in order to improve de-
tection performance. Meyer and Thakurdesai [12] estimate aleatoric uncertainty
by adding scale regression variables to the network output, modeling Laplace-
distributed residuals under a label noise assumption via a Kullback-Leibler diver-
gence loss. Feng et al. [5] estimate heteroscedastic aleatoric uncertainty for the

https://github.com/JanMarcelKezmann/MetaDetect3D
https://github.com/JanMarcelKezmann/MetaDetect3D
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region proposal and the detection head of an object detector separately by mod-
eling diagonal-covariance normally distributed bounding box regression. Feng et
al. [4] achieve joint estimation of aleatoric and epistemic UQ by adding regression
variables that model the covariance diagonal of a multi-variate normal distribu-
tion of the four bounding box parameters alongside MC dropout total variance
for the epistemic component. Chen et al. [2] extract aleatoric uncertainty infor-
mation from a self-supervised projection-reconstruction mechanism propagated
to 3D object detection on camera images. Further, epistemic uncertainty of ob-
ject localization is quantified via MC dropout. Yang et al. [23] perform UQ for
3D object detection on Lidar and extend the multi-input multi-output model
MIMO [8] which modifies the network to be supplied simultaneously with n in-
puts and providing n outputs. This simulates a deep ensemble at inference time
at the cost of increased memory consumption for input and output layers.

In the field of 2D object detection in camera images by DNNs, methods for
UQ have been developed in a series of works [19,16] related with research on
UQ in semantic segmentation [18,17]. Schubert et al. [19] utilize the pre-NMS
anchor statistics in a post-processing approach to obtain box-wise confidence
and IoU -estimates. Riedlinger et al. [16] use instance-wise gradient scores in a
post-processing scheme to obtain calibrated uncertainty estimates improving de-
tection performance. Inspired by these lines of research, we develop a framework
for UQ in 3D object detection for Lidar point clouds. We use lightweight post-
processing models on top of a pre-trained Lidar point cloud object detector in
order to obtain improved uncertainty and IoU -estimates. In contrast to previous
work, our approach has the advantage that it may be applied to any pre-trained
object detector without alteration of training or architecture and does not carry
the computational and memory cost of sampling weights in a Bayesian manner
like MC dropout or deep ensembles. We show that this approach leads to more
reliable object detection predictions and that it can be applied in an intuitive
way in order to detect annotation errors in object detection datasets.

3 Proposed Method

In this section we describe our post-processing mechanism and how it can be
applied to improve detection performance and to detect annotation errors. Our
method assumes an object detector f(·) which maps point clouds X to a list of
N bounding boxes

f(X) =
{
b̂1, . . . , b̂N

}
. (1)

Point clouds X = (p1, . . . ,pNpt) consist of Lidar points p = (x, y, z, r) ∈ R4 rep-
resented by three coordinates (x, y, z) and a reflectance value r each. Bounding
boxes are represented by features b̂j(X) = (x̂j , ŷj , ẑj , ℓ̂j , ŵj , ĥj , θ̂j , ŝj , π̂j

1, . . . , π̂
j
C).

Here, x̂j , ŷj , ẑj , ℓ̂j , ŵj , ĥj , θ̂j define the bounding box geometry, ŝj is the object-
ness score and (π̂j

1, . . . , π̂
j
C) is the predicted categorical probability distribution.

The latter defines the predicted class κ̂j = argmaxc=1,...,C π̂j
c while the object-

ness score ŝj is the model’s native confidence estimate for each prediction. Out
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b̂i

X ∩ b̂i

X \ b̂i
f(X) \ Prop(̂bi)

Prop(̂bi)

b̂i

Fig. 2: Left: Illustration of the P i and Φi features counting Lidar points falling
into a given predicted box. From the points X ∩ b̂i, reflection statistics are
generated. Right: Schematic illustration of the proposal set Prop(̂bi) for a given
predicted box b̂i (here, in two dimensions for simplicity). From the proposal
boxes, further pre-NMS statistics are derived.

of the N bounding boxes, only a small amount NNMS will be left after non-
maximum suppression (NMS) filtering and contribute to the final prediction of
the detector

NMS[f(X)] =
{
b̂i : i ∈ INMS

}
, (2)

where we let INMS ⊂ {1, . . . , N} denote the post-NMS index set indicating sur-
vivor boxes.

LMD Features. From this information we generate geometrical and statistical
features for each b̂i ∈ NMS[f(X)] for the purpose of UQ. In addition to the
bounding box features

ϕ̂i := {x̂i, ŷi, ẑi, ℓ̂i, ŵi, ĥi, θ̂i, ŝi, κ̂i} (3)

of b̂i we compute the geometric features volume V i = ℓ̂iŵiĥi, surface area Ai =
2(ℓ̂iŵi + ℓ̂iĥi + ŵiĥi), relative size F i = V i/Ai, number of Lidar points P i =

|X ∩ b̂i| within b̂i and fraction of Lidar points Φi = P i/|X| in b̂i, see fig. 2 on
the left for an illustration. Moreover, each Lidar point that falls into b̂i (i.e., in
X ∩ b̂i) has a reflectance value r. We add the maximal (ρimax), mean (ρimean)
and standard deviation (ρistd) over all reflectance values of points in b̂i. Lastly,
for each b̂i, we take the pre-NMS statistics into consideration which involves all
proposal boxes in f(X) that are NMS-filtered by b̂i, i.e., the pre-image

Prop(̂bi) := NMS−1[{b̂i}]. (4)

These are characterized by having a significant three-dimensional IoU3D with
b̂i, see fig. 2 on the right. The number of proposal boxes N i := |Prop(̂bi)| is an
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Fig. 3: Schematic illustration of the LMD meta regression pipeline. Training of
the model is based on the output f(X) of a fixed (frozen) object detector and
the bounding box ground truth Y . Meta classification follows the same scheme
with binary training targets τ i = 1{ιi>0.5}.

important statistics since regions with more proposals are more likely to contain
a true prediction. We further derive minimum, maximum, mean and standard
deviation statistics over proposal boxes b̂ ∈ Prop(̂bi) for all

mi ∈ ϕ̂i ∪ {V i, Ai, F i, P i, Φi, ρimax, ρ
i
mean, ρ

i
std}, (5)

as well, as the IoU3D and bird-eye intersection over union IoUBEV values between
b̂i and all proposals Prop(̂bi). Overall, this amounts to a vector ξi(X) of length
n = 90 consisting of co-variables (features) on which post-processing models are
fit in order to predict the IoUBEV between b̂i and the ground truth or classify
samples as true (TP) or false positives (FP). We call a box a TP if IoUBEV ≥ 0.5,
otherwise we declare it FP.

Post-Processing. On an annotated hold-out dataset Dval (consisting of point
cloud-annotation tuples (X, Y )), we compute a structured dataset denoted X =
(ξ1, . . . , ξNval) ∈ Rn×Nval consisting of feature vectors for each of the Nval pre-
dicted boxes over all of Dval. The illustration of our method in fig. 3 shows
this scheme for one particular Lidar frame (X, Y ) and the respective predic-
tion on it. Further, we compute ιi := IoUBEV (̂b

i(X), Y ) between prediction and
ground truth form Dval as target variables Y = (ι1, . . . , ιNval) ∈ RNval . We then
fit a light-weight (meta-) regression model R : ξi 7→ Yi on (X,Y) which acts as
post-processing module of the detector in order to produce IoUBEV-estimates
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ι̂i := R(ξi) for each detection b̂i. Similarly, we fit a binary (meta-) classifica-
tion model C obtaining the binary targets 1{Y>0.5} which allows us to generate
alternative confidence estimates τ̂ i := C(ξi) ∈ [0, 1] for each prediction b̂i in post-
processing. Note that C is a potentially non-monotonous function of the features
ξi and, therefore, can change the obtained confidence ranking per frame and
influence detection performance as opposed to re-calibration methods [14,7].

Meta classification empirically turns out to produce confidence estimates
which are both, sharper (in the sense of separating TPs from FPs) and bet-
ter calibrated that those produced natively by the detector, i.e., the objectness
score. However, when regarding the cases of disagreement between the computed
IoUBEV and C, we frequently find that C is to be trusted more than the com-
puted IoUBEV due to missing annotations. We use this observation in order to
generate proposals (in descending estimation τ̂ i) based on the object detector
in comparison with the given ground truth (FP according to the ground truth,
i.e., ιi < 0.5) that serve as suggestions of annotation errors.

4 Numerical Results

In this section we study meta classification and meta regression performance for
two benchmark datasets as well as a proprietary dataset by Aptiv. The meta
classification results are presented in terms of accuracy and area under receiver
operator characteristics curve (AUROC [3]) and the meta regression results are
presented in terms of R2. We compare our uncertainty quantification method
LidarMetaDetect (LMD) with two baseline methods (score, box features). More-
over, we detect annotation errors on both benchmark datasets using LMD.

Implementation Details. We implemented our method in the open source MMDe-
tection3D toolbox [13]. For our experiments, we consider the PointPillars [9] and
CenterPoint [24] architectures. The mean average precision (mAP@IoU0.5) for
KITTI based on IoUBEV is 69.0 for CenterPoint and 68.8 for PointPillars. On
KITTI, the mAP@IoU0.5 based on IoU3D is 64.2 for CenterPoint and 68.8 for
PointPillars and for Aptiv, the mAP@IoU0.5 based on IoU3D is 39.5 for Cen-
terPoint and 43.7 for PointPillars. NuScenes performance is given as a weighted
sum of mAP as well as the nuScenes detection score (NDS). For CenterPoint, the
mAP is 57.4 and the NDS is 65.2 and for PointPillars the mAP is 40.0 and the
NDS is 53.3. For KITTI and Aptiv, the models were trained individually while
available public model weights from MMDetection3D are used for nuScenes. The
performance results obtained have all been evaluated on respective test datasets.
For KITTI, the images and associated point clouds are split scene-wise, such that
the training set consists of 3,712, the validation set of 1,997, and the test set
of 1,772 frames. For nuScenes, the validation set is split scene-wise into 3,083
validation and 2,936 test frames. The Aptiv dataset consists of 50 sequences,
split into 27, 14, 9 sequences with about 145K, 75K, 65K cuboid annotations
for training, validation and testing, respectively. Every sequence is about two
minutes long while every fifth point cloud is annotated. The covered locations
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are countryside, highway and urban from and around (anonymous). The dataset
includes four classes: 1. smaller vehicles likes cars and vans, 2. larger vehicles
like busses and trucks, 3. pedestrians and 4. motorbikes and bicycles.
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Fig. 4: Strongest correlation coefficients
for constructed box-wise features and
IoUBEV for the CenterPoint architecture
on the nuScenes test dataset and a score
threshold τ = 0.1.
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Fig. 5: Feature selection via greedy
heuristic for CenterPoint, nuScenes
and score threshold 0.1. Top: meta
classification AUROC . Bottom: meta
regression R2. The dashed line shows
the performance when incorporating
all features (LMD).

Correlation of Box-wise Features with the IoUBEV. Figure 4 shows the Pearson
correlation coefficients of the constructed box-wise dispersion measures with the
IoUBEV of prediction and ground truth for CenterPoint on the nuScenes test
dataset. The score features have strong correlations (> 0.5) with the IoUBEV.
Note that, although the four score-related features show the highest individual
correlation, these features may be partially redundant. The number of candidate
boxes N i is also reasonably correlated with the IoUBEV (0.3007), whereas the
remaining features only show a minor correlation (< 0.3). However, they may still
contribute to higher combined explanatory information in meta classification.

Comparison of Different Meta Classifiers and Regressors. Different models can
serve as post-processing modules for meta classification (C) and meta regression
(R, see section 3). For meta classification, the meta models under consideration
are logistic regression (LogReg), random forest (RF), gradient boosting (GB)
and a multilayer perceptron (MLP) with two hidden layers. For meta regression,
analogous regression models are used, only the logistic regression is replaced with
a ridge regression (RR).

The respective meta models are trained on the box-wise features ξi of the
validation sets Dval and evaluated on the features of the test sets which are
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Table 1: Comparison of meta classification accuracy and AUROC as well as
meta regression R2 values for the score baseline, bounding box features and
LMD for CenterPoint and nuScenes test dataset with score threshold 0.1; higher
values are better. Bold numbers indicate the highest performance and under-
lined numbers represent the second highest (row-wise). Models used are Logistic
Regression (LogReg), Ridge Regression (RR), Random Forest (RF), Gradient
Boosting (GB) and a Multi Layer Perceptron (MLP).

Meta Classification Meta Regression

Accuracies AUROC s R2

Method LogReg RF GB MLP LogReg RF GB MLP RR RF GB MLP

Score 0.8777 0.8524 0.8772 0.8773 0.8644 0.8617 0.8623 0.8640 0.4641 0.4675 0.4733 0.4751
Box Features 0.8877 0.9049 0.9203 0.8975 0.9056 0.9454 0.9529 0.9293 0.5292 0.6681 0.6792 0.6249

LMD 0.9118 0.9166 0.9297 0.9200 0.9450 0.9581 0.9628 0.9530 0.6451 0.7242 0.7296 0.7122

disjoint from Dval. LMD uses all available features to train the meta models,
whereas in the score baseline only the score of the prediction ŝi is used to fit
the meta model. For the bounding box features baseline, the box features of the
prediction ϕ̂i are used, in which the score ŝi is also included. Table 1 presents
meta classification accuracy and AUROC as well as meta regression R2 for the
CenterPoint architecture on the nuScenes dataset. For the score baseline, all
meta models perform similarly well. For the meta classification accuracy there
are differences of up to 2.53 percent points (pp), for the AUROC of at most
0.27 pp and for meta regression R2 of up to 1.10 pp. For the box features the
maximum differences increase to 3.26 pp in terms of accuracy, to 4.73 pp for
AUROC and to 15.00 pp for R2. In particular, for the box features and LMD,
the non-linear models (RF, GB, MLP) outperform the linear model in both
learning tasks. LMD outperforms the baselines box features/score by 0.94/5.20
pp in terms of accuracy, by 0.99/9.84 pp in terms of AUROC and by 5.04/25.45
pp in terms of R2. If overfitting of the meta model is made unlikely by choos-
ing appropriate hyperparameters, the performance of the meta model typically
benefits from adding more features, since the available information and num-
ber of parameters for fitting are increased. Overall, GB outperforms all other
meta models, especially when multiple features are used to train and evaluate
the respective learning task. Therefore, only results based on GB are shown in
the following experiments. This finding may be attributed to the efficient fitting
procedure and discontinuous nature of GB models.

Comparison for Different Datasets and Networks. Table 2 shows meta classifica-
tion accuracy and AUROC as well as meta regression R2 for all network-dataset
combinations based on GB models. In all cases LMD outperforms both baselines
and the bounding box features outperform the score baseline. This is to be ex-
pected, since the score is contained in the box features and the box features are
contained in the set of features of LMD. The improvement from the score base-
line to LMD ranges from 0.83 to 6.76 pp in terms of meta classification accuracy,
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Table 2: Comparison of meta classification accuracy and AUROC as well as meta
regression R2 for the score baseline, bounding box features and LMD for all avail-
able network-dataset combinations with IoUBEV threshold 0.5, score threshold
0.1 and GB as meta model. Bold numbers indicate the highest performance and
underlined numbers represent the second highest (row-wise).

Meta Classification Meta Regression

Accuracies AUROC s R2

Dataset Network Score Box LMD Score Box LMD Score Box LMD

KITTI PointPillars 0.8921 0.8931 0.9004 0.9530 0.9537 0.9592 0.7108 0.7131 0.7287
CenterPoint 0.8688 0.8691 0.8806 0.9274 0.9343 0.9466 0.6235 0.6472 0.6840

nuScenes PointPillars 0.8398 0.8708 0.8915 0.8129 0.9002 0.9280 0.4055 0.5593 0.6413
CenterPoint 0.8772 0.9203 0.9297 0.8623 0.9529 0.9628 0.4732 0.6792 0.7296

Aptiv PointPillars 0.7939 0.8489 0.8615 0.8558 0.9274 0.9396 0.5096 0.6568 0.6924
CenterPoint 0.8265 0.8440 0.8548 0.8914 0.9134 0.9275 0.5456 0.6286 0.6591

from 0.62 to 10.51 pp in terms of AUROC and from 1.79 to 25.64 pp in terms of
meta regression R2. The improvement from the bounding box features to LMD
ranges from 0.73 to 2.07 pp in terms of meta classification accuracy, from 0.55 to
2.78 pp in terms of AUROC and from 1.56 to 8.20 pp in terms of meta regression
R2. This illustrates that the addition of features, other than just the bounding
box features themselves, has a significant impact on meta classification and meta
regression performances and, therefore, separation of TP and FP predictions.
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Fig. 6: Confusion matrix of a GB
classifier for LMD on CenterPoint,
nuScenes and score threshold 0.1.

Fig. 7: Box-wise scatter plot of true
IoUBEV and predicted IoUBEV values
for LMD on CenterPoint, nuScenes
and score threshold 0.1. The predic-
tions are based on a GB regressor.

For CenterPoint and nuScenes, the confusion matrix fig. 6 shows that the
GB classifier based on LMD identifies most TPs and true negatives. Therefore,
predictions that are in fact FPs are also predicted as FPs. Note, that here we
regard “meta” true negatives conditional on the detectors prediction (each ex-
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ample is a detection TP or FP that is binarily classified). The values on the
off-diagonals indicate the errors of the meta classifier. 7,002 predictions are pre-
dicted as FPs even though they are TPs. In contrast, 4,484 predictions are pre-
dicted as TPs, even though they are actually FPs. Figure 7 shows a scatter plot
of the true IoUBEV of prediction and ground truth and the IoUBEV estimated
by LMD meta regression based on a GB model, where each point represents one
prediction. Well-concentrated points around the identity (dashed line) indicate
well-calibrated IoUBEV-estimates and, therefore, object-wise quality estimates.
We observe a cluster of under-estimations for small IoUBEV below the diagonal
(bottom left) and false positives, vertically above true IoUBEV = 0 on the left.

Feature Selection for Meta Classification and Meta Regression. Overall, LMD is
based on 90 features, which partly describe very similar properties. In order to
get a subset of features which contains as few redundancies as possible but is still
powerful, we apply a greedy heuristic. Starting with an empty set, a single feature
that improves the meta prediction performance maximally is added iteratively.
Figure 5 shows results in terms of AUROC for meta classification and in terms
of R2 for meta regression for CenterPoint on nuScenes. The tests for the meta
classification and the meta regression are independent of each other, i.e., the
selected features of the two saturation plots do not have to match. When using
five selected features, the associated meta models perform already roughly as
well as when using all features (LMD), i.e., 0.19 pp worse in terms of meta
classification AUROC and 0.92 pp worse in terms of meta regression R2. With
ten features used, the respective differences with the results obtained by LMD
are < 0.1 pp and thus negligible. The tests for the greedy selection heuristic for
all network-dataset-combinations are shown in the appendix.

Fig. 8: Reliability plots of the score (left) and GB classifier for LMD (right) with
calibration errors (ECE, MCE) for CenterPoint, nuScenes test dataset, score
threshold 0.1 and IoUBEV threshold 0.5.

Confidence Calibration. The score and the meta classifier confidences are di-
vided into 10 confidence bins to evaluate their calibration errors. Figure 8 shows
exemplary reliability plots for the object detector score and LMD based on a
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GB classifier with corresponding expected (ECE [14]) and maximum calibra-
tion error (MCE [14]). The score is over-confident in the lower confidence ranges
and well-calibrated in the upper confidence ranges, whereas the GB classifier for
LMD is well-calibrated overall. This observation is also reflected in numerical
calibration errors, as the GB classifier for LMD outperforms the score by 8.07
pp in terms of ECE and by 11.48 pp in terms of MCE. This indicates that LMD
improves the statistical reliability of the confidence assignment.

Fig. 9: Proposed annotation errors in nuScenes (top two) and KITTI (bottom
two). Top images show point clouds with annotations in purple and the proposal
in red. Camera images aid the evaluation.

Annotation Error Detection as an Application of Meta Classification. The task
of annotations error detection with LMD is inspired by fig. 7. There are a number
of predictions with IoUBEV = 0 but with high predicted IoUBEV. After looking
at these FPs it has been noticed that the prediction itself is, in fact, correct and
the corresponding ground truth is not. More precisely, incorrect ground truth
corresponds to missing labels, labels with a wrong assigned class or the location
of the annotation is inaccurate, i.e., the 3D bounding box is not correctly aligned
with the point cloud. Annotation error detection with LMD works as follows: all
FP predictions, i.e., predictions that have IoUBEV < 0.5 with the ground truth,
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are sorted by the predicted IoUBEV in descending order across all images. Then,
the first 100 predictions, i.e., the top 100 FPs with highest predicted IoUBEV,
are manually reviewed, see fig. 9 for examples of proposals by this method. In
this case, a GB classifier is used to predict the box-wise IoUBEV. We compare
LMD against a score baseline which works in the same way, except that the
FPs are sorted by the objectness score. As a random baseline, 100 randomly
drawn FPs are considered for review which provides an insight into how well
the respective test dataset is labeled. In general, if it was unclear whether an
annotation error was present or not, this case was not marked as annotation
error, i.e., the following numbers are a conservative (under-)estimation. LMD
finds 43 annotation errors from 100 proposals and, in contrast, the score only
6 out of 100. Even the random baseline still finds 3 annotation errors, which
indicates that there is a significant number of annotation errors in the nuScenes
test dataset and that these can be found at far smaller effort with LMD than
with the score. Annotation error detection counts for nuScenes and KITTI test
datasets are shown in the appendix.

5 Conclusion

In this work we have introduced a purely post-processing-based uncertainty
quantification method (LMD). A post-processing module, which is simple to fit
and can be plugged onto any pre-trained Lidar object detector, allows for swift
estimation of confidence (meta classification) and localization precision (meta
regression) in terms of IoUBEV at inference time. Our experiments show that
separation of true and false predictions obtained from LMD is sharper than that
of the base detector. Statistical reliability is significantly improved in terms of
calibration of the obtained confidence scores and IoUBEV is estimated to consid-
erable precision at inference time, i.e., without knowledge of the ground truth. In
addition to statistical improvement in decision making, we introduce a method
for detecting annotation errors in real-world datasets based on our uncertainty
estimation method. Error counts of hand-reviewed proposals which are shown
for broadly used public benchmark datasets suggest a highly beneficial industrial
use case of our method beyond improving prediction reliability. We also hope
that our investigations will spark future research in the domains of light-weight
uncertainty estimation and annotation error detection for large-scale datasets.
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