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Abstract. Image stitching plays a crucial role for various computer vision ap-
plications, like panoramic photography, video production, medical imaging and
satellite imagery. It makes it possible to align two images captured at different
views onto a single image with a wider field of view. However, for 3D scenes
with high depth complexity and images captured from two different positions,
the resulting image pair may exhibit significant parallaxes. Stitching images with
multiple or large apparent motion shifts remains a challenging task, and existing
methods often fail in such cases. In this paper, a novel image stitching pipeline
is introduced, addressing the aforementioned challenge: First, iterative dense fea-
ture matching is performed, which results in a multi-homography decomposition.
Then, this output is used to compute a per-pixel multidimensional weight map of
the estimated homographies for image alignment via weighted warping. Addi-
tionally, the homographic image space decomposition is exploited using combi-
natorial analysis to identify parallaxes, resulting in a parallax-aware overlapping
region: Parallax-free overlapping areas only require weighted warping and blend-
ing. For parallax areas, these operations are omitted to avoid ghosting artifacts.
Instead, histogram- and mask-based color mapping is performed to ensure vi-
sual color consistency. The presented experiments demonstrate that the proposed
method provides superior results regarding precision and handling of parallaxes.

Keywords: Image Stitching · Parallaxes · Feature Matching.

1 Introduction

Image stitching is an important technique in computer vision that combines two or more
images with overlapping areas into a single high-resolution, wide-field image. It is used
in various media applications, including generation of panoramic images for virtual
tours, computation of high-resolution photo mosaics from multiple satellite images,
and in medical imaging procedures [18,19,27,33].

Typically, conventional image stitching methods are executed in three stages [25]:
(1) Extraction and matching of features between an image pair, (2) Estimation of a
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global homography based on the feature matches, and (3) Perspective transformation
and blending of the target image onto the reference image. One of the most challenging
steps here is image warping using one global estimated homography. A homographic
relation can be used to describe feature correspondences for points, which lie on the
same plane in 3D space [7]. However, if the captured 3D scene is not planar, i.e. includ-
ing foreground objects at different scene depths, and the camera baseline between an
image pair is large, then parallaxes can be observed [11]. In such cases, stitching results
based on planar transformation models, such as the aforementioned global homography
approach, often exhibit visual artifacts, like distortions and ghosting.

To address the issue of parallax artifacts in stitching of a single image pair, various
warping methods were developed previously. For example, some approaches divide an
image into regular pixel cells, which are then warped using different geometric models,
such as [5,11,12,29]. In order to additionally optimize warping, energy minimization
frameworks were utilized [12,31]. Also, local alignment techniques were introduced
to register specific regions of the image while hiding artifacts in misaligned regions
through seam-cutting methods, such as [6,16,28,30]. However, images with high depth
complexity and large parallaxes still represent a challenge as neighboring pixels in the
reference image may not have corresponding adjacent pixels in the target image.

In this paper, a new image stitching pipeline is introduced that addresses the afore-
mentioned problem. The main contribution of this work comprises an accurate and
robust stitching method for image pairs, which exhibit complex structures and multiple
depth layers, while avoiding visual artifacts caused by parallaxes: The presented solu-
tion utilizes results from the work of Seibt et al. [24], dense feature matching (DFM),
for detection of robust and accurate feature correspondences between image pairs. DFM
targets at images of real scenes with significant depth complexities, offering high pre-
cision and recall values.

The corresponding pipeline is based on a homographic decomposition of the image
space, providing the following advantages for image stitching in terms of alignment
accuracy and parallax handling: (a) Conventional feature matching is extended to an
iterative rematching process. The search for correct feature matches is thus re-executed
per iteration with an individually estimated homographic transformation. By utilizing
the resulting homographic decomposition, DFM positionally refines matching feature
points in the target image and extrapolates additional points that could not be matched
using standard “one-shot matching“ methods. The result of the rematching process is a
precise set of dense feature matches, each associated with a homography matrix, recov-
ering multiple tangent planes in a 3D scene. (b) Additionally, Delaunay triangulation of
the dense feature point set is used to determine the overlapping region of an image pair.
(c) Through combinatorial analysis of the underlying per-vertex homography configu-
rations in the overlapping region, ”parallax awareness“ is handled and “critical image
areas” (i.e. containing occlusions) are identified by so-called inhomogeneous triangles.
The overlapping sub-region without visible parallaxes is classified as homogeneous.

Subsequently, these differently classified regions are processed in the proposed
stitching pipeline as follows: (1) For both, the homogeneous (overlapping) region and
non-overlapping region of the target image, a multidimensional weight map is com-
puted. It is used to control the contributions of the multi-homography decomposition re-
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sults in order to achieve an accurate and robust perspective transformation for warping.
The concept of utilizing a stitching weight map was inspired by Gao at el. [5]: In their
approach, two-dimensional weights were used for dual homography warping. (2) For
the inhomogeneous (overlapping) region, weight-based transformations and blending
would result in ghosting artifacts due to parallaxes. Instead, a histogram- and mask-
based color mapping is executed. (3) After perspective transformation, non-overlapping
sub-areas in the target image may result in undesirable intersections with overlapping
sub-areas in the reference image. These intersecting sub-areas are cut out in order to
prevent additional visual artifacts. (4) In the last step, the perspective transformation
on the cropped target image is performed utilizing the weight map. Additionally, the
overlapping homogeneous region is blended to obtain smooth visual transitions.

2 Related Work

Over the years, various stitching methods were proposed, which can be broadly catego-
rized into three types: Adaptive warping methods, shape-preserving warping methods
and seam-based methods. For the adaptive warping methods, Gao et al. [5] introduced
a dual homography method that can only handle scenes with a distant and a ground
plane. The method adaptively blends the homographies estimated for the two planes
according to positions of clustered feature points. Zaragoza et al. [29] estimated op-
timal homographies for each regular grid cell using moving direct linear transforma-
tions (MDLT). They assigned higher weight to feature points closer to the target cell
based on alignment error. Liu and Chin [17] introduced an extension of [29] by insert-
ing appropriate point correspondences in automatically identified misaligned regions to
improve the underlying warp. Zhang et al. [31] minimized distortions in warped im-
ages by incorporating a scale-preserving term and a line-preserving term. Li et al. [12]
proposed an analytical warping function based on thinplate splines with radial basis
functions to approximate the projection bias. Lee and Sim [10] described an epipo-
lar geometry-based video stitching method. It is suitable for handling large parallaxes,
requiring temporal motion information of foreground objects. Lee and Sim [11] also
proposed a solution that uses warping of residual vectors to distinguish matching fea-
tures from different depth planes, resulting in more naturally stitched images. Liao and
Li [14] introduced a method that simultaneously emphasizes different features under
single-perspective warps, including alignment, distortion, and saliency. Chen et al. [4]
proposed a method for complex image pairs with moving pedestrians. It includes a
structure preservation module based on grid constraints and a composite ghost removal
module using YOLOv4, ensuring unique preservation of each pedestrian after stitching.
Jia et al. [9] introduced the characteristic number to match co-planar local sub-regions,
and additionally considered global co-linear structures using a separate objective func-
tion. While [5] is only capable of handling scenes with two planar regions, methods such
as [12] [29] [31] can warp backgrounds containing multiple planar regions. However,
these methods often rely on the assumption of continuous scene depths with minimal
parallaxes. That poses a challenge for aligning foreground objects with large parallaxes,
which have abrupt depth changes relative to the background.
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Fig. 1: UML-based activity diagram of the presented image stitching pipeline: main
stages in grey, sub-activities in white color.

Shape-preserving warping-based methods are commonly introduced to mitigate per-
spective distortions in non-overlapping regions of an image pair. Chang et al. [2] pre-
sented a warping method that combines a projective and a similarity transformation.
It smoothly extrapolates the projective transformation of overlapping regions to non-
overlapping regions, gradually transitioning from projection to similarity across the im-
age. Chen et al. [3] estimated the scale and rotation for each image and designed an
objective function for warping based on a global similarity prior. Lin et al. [15] pro-
posed a homography linearization method that also smoothly extrapolates warps from
overlapping to non-overlapping regions. Li et al. [13] described a quasi-homography
warp to solve the line bending problem by linear scaling of the horizontal homography
component.

Seam-based methods produce visually appealing image stitching results, but typi-
cally lack geometric precision due to local alignment: Gao et al. [6] introduced a seam-
cutting loss to measure the discontinuity between warped target and reference images.
They estimated multiple homographies using RANSAC and selected the optimal one
with the minimum seam-cutting loss. Lin et al. [16] improved stitching performance
using iterative warp and seam estimation. Zhang et al. [30] used local homographies to
align specific image regions and applied content preserving warping for further refine-
ment. Misalignment artifacts were hidden via seam cutting. Xue et al. [28] introduced
a method that integrates point-line features as alignment primitives. They used a pixel
difference evaluation model to iteratively compute and update their smoothing term to
find the most suitable seam.

Previous deep-learning-based stitching methods [20] [32] [21] face significant chal-
lenges, like limitation to mostly synthetic training datasets, unsatisfactory performance
for real-world images and issues with preservation of the original image resolutions.

3 Parallax-aware Image Stitching Pipeline

In the following sub-sections the four main stages of the presented stitching pipeline
are described, including all corresponding processing steps (overview in Fig. 1).



Parallax-aware Image Stitching based on Homographic Decomposition 5

3.1 Dense Feature Matching

In the first pipeline stage, DFM is executed to generate a precise and dense set of feature
matches between an image pair. This makes it possible to identify the overlapping pixel
region and to obtain a homographic decomposition of the image space: DFM performs
iterative rematching to give mismatched feature points a further chance to be consid-
ered in subsequent processing steps, resulting in potentially larger matching sets and
increased recall values. During rematching an individual homography is estimated per
iteration, searching for feature matches that correspond to the same plane in 3D space.
In practice, a single homography can span multiple surfaces. So, feature points are clus-
tered per iteration to improve the homography estimation by recalculating it for each
cluster. The result of rematching is the homographic decomposition, i.e. a set of feature
point pair clusters, each associated with a distinct homography matrix (illustration in
Fig. 2 (c)).

Additionally, rematching involves incremental Delaunay triangulation of the refer-
ence feature set and a mapping of the resulting mesh to the target image. As described
in [24] further DFM processing steps utilize this mesh as follows: Delaunay outlier
detection removes false positive matches by detecting reference-to-target triangle edge
intersections, which are often caused by repeated patterns. Focused matching simu-
lates “visual focusing” by executing local rematching per Delaunay triangle, resulting
in the detection of additional detailed feature points. Additionally, matching accuracy
is increased using positional feature refinement by taking advantage of neighboring ho-
mography candidates per feature point. Finally, feature extrapolation is used to detect
additional feature points by utilizing multiple local homography candidates per Delau-
nay triangle.

The overall DFM result is a refined homographic decomposition (see Fig. 2 (d)).
The triangulation results are illustrated in Fig. 2 (e-h). Fig. 2 (e) and 2 (f) depict the
outcome of the initial iterative rematching. Fig. 2 (g) and 2 (h) show densified meshes
resulting from execution of further DFM processing steps, mentioned previously. As
can be seen, the meshes have undergone substantial refinement, resulting in a better
approximation of geometric structures in the scene.

3.2 Overlapping Region

The next step of the stitching pipeline builds on the final DFM Delaunay triangulation
of the reference image feature set and the corresponding mapping to the target image.
Pixels, which are located within the triangle mesh and its mapping, respectively, define
the overlapping region for stitching. Further processing of this region requires segmen-
tation of the corresponding Delaunay mesh into homogeneous and inhomogeneous tri-
angles: Homogeneity – in context of a feature point mesh – is defined for a triangle t
with vertices vi ∈ Vt as follows [24]: Let H be the set of homography matrices result-
ing from homographic decomposition, hi ∈ H the (initially) associated homography
with feature point vertex vi. Then, t is homogeneous, if:

∃hhom ∈ H,∀i ∈ {1, 2, 3} : hhom ∗ vi ≈ hi ∗ vi. (1)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: (a,b) Input image pair; (c) Clustered features in the reference image after DFM’s
iterative rematching. Each color represents one cluster with an individual homography;
(d) Matched features after further DFM processing, incl. focused matching, refinement
and extrapolation: initially matched source features in blue (cf. image c), further fea-
tures in green; (e) Triangulation of matched features after initial iterative rematching;
(f) Mapping of the mesh in image e to target image; (g,h) Densified triangulations using
the final feature matching set after further DFM processing.

Homographic decompositions commonly have high variances in homography-to-
vertex associations with initially one homography per vertex. The homogenization pro-
cess is executed in order to relax the detection of inhomogeneous triangles for feature
detection. In this work, it is used to improve segmentation of the overlapping region for
stitching: The homogenization uses the connectivity information of the Delaunay fea-
ture set mesh to search for local equivalently transforming homography matrices. Each
feature point is successively transformed from the reference image to the target image
using homographies of neighboring features. Each time, the reprojection error is calcu-
lated and compared against the threshold parameter of the RANSAC algorithm (used
during rematching). If the reprojection error of a neighboring homography is smaller,
then it is (additionally) assigned to the current feature point. Notice that in the result-
ing (homogenized) multi-homographic decomposition a feature point can be associated
with multiple locally equivalent transforming matrices. Consequently, an ablation of
the homogenization process would prevent robust detection of inhomogeneous triangles
(parallax areas). This would inevitably result in ghosting artifacts after final blending.
The homogenization process is shown in Algorithm 1 and illustrated in Fig. 3 (a).

The next pipeline step aims at a seamless overlapping region for stitching. Hence,
the multi-homographic decomposition is used to compute a multidimensional warping
weight map ω for the homogeneous sub-region: For each pixel in the reference image,
a point-triangle intersection test is executed based on the Delaunay mesh. On a hit, the
three vertices of the corresponding enclosing triangle are selected and the Euclidean
distance di to each vertex is calculated. Then, each initially per-vertex associated ho-
mography Hi for a pixel position (x, y) is weighted using the following equation:



Parallax-aware Image Stitching based on Homographic Decomposition 7

(a) (b) (c) (d)

Fig. 3: (a) Segmented overlapping region of a reference image with homogeneous (blue)
and inhomogeneous triangles (red); (b) Visualization of a multidimensional per-pixel
weight map for an overlapping homogeneous region of a target image. Each homogra-
phy is represented by a unique color. The pixel color in the overlapping homogeneous
region is a combination of colors according to the weighted homographies; (c) Stitching
result of an overlapping region. The homogeneous region was transformed and blended.
The inhomogeneous region was unprocessed; (d) The same stitching result with color
mapping applied to the inhomogeneous region.

ω(x, y, i) =
1/d2i∑n
k=1 1/d

2
k

(2)

where n = 3, corresponding to the simplex dimension of a triangle. Using recipro-
cal squared distances results in a smoother transition between the homography clusters
during weighted warping [5]. An example visualization of the multidimensional weight
map for an overlapping homogeneous region is shown in Fig. 3 (b).

As introduced, inhomogeneous regions represent “critical image areas”, typically
exhibiting parallaxes. These cannot be aligned properly. To avoid ghosting artifacts,
computation of the weight matrix, weighted transformation and blending are omitted
for this region. In order to prevent visual color discrepancies between the blended over-
lapping region and the non-blended parallax region, color histograms are precomputed
for both, the inhomogeneous area of the reference image and the separately blended ho-
mogeneous area. Subsequently, histogram-matching-based color mapping is performed

Algorithm 1 Homogenization (of overlapping region)
Input: Source feature point set P , corresponding

target feature point set P ′, global homography set H ,
threshold parameter ϵ of RANSAC

Output: P and P ′ associated with multiple h ∈ H
1: for each p ∈ P and corresponding p′ ∈ P ′ do
2: for each h ∈ H | neighbor of p has homography h do
3: Transform p into the target image: pT := h * p
4: if d(p′, pT ) < ϵ then
5: Assign h to local homography set of p
6: end if
7: end for
8: end for
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(a) (b) (c)

Fig. 4: (a) Triangulation of a reference feature set (blue triangles) with additional bor-
der points (black triangles) considered for cutting. (b) Triangulation mesh mapped to
the target feature set including border points. Orange target triangles are cropped. (c)
Visualization of a multidimensional per-pixel weight map for a non-overlapping region
in a target image (border pixel area). Each estimated homography is associated with
an individual color. The final visualization color of a pixel results from the weighted
mixture of all associated homography colors. Black pixels illustrate the cut out border
areas of the target image.

per color channel: Pixels of the inhomogeneous region are modulated using histogram
equalization w.r.t. the histogram of the homogeneous region [1]. Fig. 3 (c-d) shows an
example color mapping result in an inhomogeneous region.

3.3 Non-Overlapping Region

In this stage, the non-overlapping region is processed, preparing it for later perspective
transformation regarding correct alignment and prevention of blending artifacts.

First, triangular sub-regions in the non-overlapping target image area, which would
intersect with the overlapping region of the reference image after perspective transfor-
mation, are identified: Auxiliary points are placed at the image border rectangle (per
image) using an equidistant distribution with a density corresponding to the number
of edge vertices of the Delaunay mesh. These border vertices are triangulated incre-
mentally with the existing mesh of the overlapping region in the reference image. The
resulting mesh is then mapped to the target image, and corresponding triangles in the
reference and target images are compared: If a triangle area in the target image is smaller
than the corresponding triangle area in the reference image, then it conveys less visual
information for stitching. In this case, this target triangle’s pixel area is cut out. The
target image cutting process is illustrated in Fig. 4 (a-b).

The second step is the extension of the multidimensional per-pixel weight map ω
to the non-overlapping region for later perspective transformation: For each feature
point cluster resulting from DFM’s iterative rematching (cf. sub-section 3.1) and each
pixel position (x′, y′) in the cropped target image, the closest feature point is deter-
mined. Then, for every cluster homography Hj – based on the pixel distance dj between
(x′, y′) and the closest feature point – its weight ω(x′, y′, j) is calculated according to
equation 2. Here, number n refers the total number of estimated homographies (repre-
senting n many weight matrices). The closer a selected pixel is to a feature cluster, the
higher is the weight assigned to its respective homography. Incorporating all homogra-
phies with their corresponding weights results in robust perspective transformation for
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the non-overlapping region. An example visualization of the extended multidimensional
weight map is shown in Fig. 4 (c).

3.4 Stitching

The last pipeline stage comprises final stitching computations, including perspective
transformation of the cropped target image. For each target pixel, the final homography
is computed using the multidimensional per-pixel weight map ω as follows:

H(x, y) =

n∑
k=1

ω(x, y, k)Hk |
n∑

k=1

ω(x, y, k) = 1 (3)

Perspective transformation warping using multiple weighted homographies may re-
sult in small pixel gaps in the resulting image due to scaling and projective distortions,
respectively. This gap-filling problem is solved using backward warping in combina-
tion with inverse bilinear interpolation. Finally, pixels in the homogeneous region of
the reference image, which overlap with the transformed pixels from the target image,
are uniformly blended to achieve a visually smooth transition in the stitching result.

4 Experiments and Discussion

The underlying software prototype was developed in C++ using the OpenCV 4 library.
The implemented stitching pipeline was tested with ten image pairs, each with chal-
lenging varying parallax dimensions. The evaluation set includes three image pairs of
the newly captured “Cellar Room” dataset, including different camera baselines and
viewing directions. Additionally, image pairs “Propeller”, “Building”, “Seattle”, “Back-
yard”, “Adobe” and “Garden” were picked from the “Parallax-tolerant Image Stitching”
dataset [30]. And lastly, image pair “Dwarves” is from the “Middlebury Stereo” datasets
[8,23].

4.1 Evaluation

The first evaluation part includes the comparison of visual results w.r.t. other three well-
known stitching methods: Global homography (GH), APAP [29] and ELA [12]. GH
represents a “basic stitching algorithm”, aligning image pairs using a single dominant
homography. Our implementation of GH additionally incorporates USAC [22] for a
more reliable outlier removal during feature matching. APAP and ELA are adaptive im-
age alignment methods (Source codes were provided by the respective authors). APAP
uses moving direct linear transformation (MLDT) to compute homographies for grid
cells using a spatial distance-based weighting scheme. ELA aligns grid cells by approxi-
mating the warping error analytically. In Fig. 5 all image stitching results are presented.
Comparisons to approaches with a different methodological focus were avoided, like
shape-preserving warping [2,3,13,15] and seam-cutting [6,16,28,30], respectively.

The second part of the evaluation focuses on a quantitative analysis: The methods
and test image pairs used in this part are the same as those shown in Fig. 5. Firstly,
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(a) I (b) J (c) GH (d) APAP (e) ELA (f) Proposed

Fig. 5: Image stitching results of the proposed pipeline, including comparisons to other
three methods: GH (described in text), APAP [29] and ELA [12]. The scenes are ar-
ranged from top to bottom in the following order: Three different scenes of “Cel-
lar Room”, one scene of “Propeller”, “Building”, “Seattle”, “Dwarves”, “Backyard”,
“Adobe” and “Garden”.

the image alignment performance of the overlapping region was evaluated using the
structural similarity index measure (SSIM) [26]. The overlapping region was extracted
using DFM’s Delaunay triangulation (cf. sub-sections 3.1 and 3.2). The computed SSIM
scores for the overlapping region are presented in Fig. 6. Secondly, the non-overlapping
region, which is susceptible to perspective distortion, was also evaluated as follows
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(Overall results, incl. time measurements, are in the next sub-section): To simulate
ground truth for the used image pairs, their overlapping regions were cropped in the
image pairs. Subsequently, each cropped area was uniformely subdivided into one sim-
ulated overlapping and two (left and right) non-overlapping regions. The new simu-
lated image pairs were again stitched using the presented methods, and the perspective-
transformed non-overlapping regions were evaluated against ground truth using SSIM.

4.2 Results

In comparison to the other evaluated methods, the proposed pipeline achieves signif-
icantly improved stitching quality for all scenes regarding the handling of parallaxes:
In the first image pair of “Cellar Room” only small parallaxes are noticeable (mainly
due to the table in the foreground). So, no significant parallax artifacts are visible in
any of the methods’ stitching results. However, the propsed method is the only one
that exhibits precise alignment of foreground and background objects, including accu-
rately overlapping joints of the floor flows. The second and third image pairs of “Cellar
Room” contain larger parallaxes. In contract to the proposed method, GH, APAP and
ELA produce significant misalignment artifacts in the overlapping region. The image
pair of “Propeller” exhibits noticeable parallaxes, particularly around the rotor blades.
Again, stitching results of GH, APAP and ELA contain clearly recognizable visual de-
fects in the parallax regions. Additionally, they fail to compute a proper perspective
transformation for the non-overlapping region of the target image, as the right tree
is slightly skewed. For the image pair of “Building”, ELA and the proposed method
provide the most plausible perspective transformation for the non-overlapping region.
However, all other methods produce parallax artifacts at the trees, including correspond-
ing misalignments of the overlapping region. The image pair of “Seattle” has the largest
parallaxes in the presented evaluation. Only the proposed method handles the inhomo-
geneous region appropriately. The image pairs of “Dwarves” and “Backyard” have a
high depth complexity and various minor parallaxes. Due to the variety of objects with
different scene depths, GH, APAP and ELA fail to align both, foreground and back-
ground objects simultaneously. However, for the image pair of “Backyard”, GH, APAP
and ELA provide a better perspective transformation than the proposed method (Notice
the slightly sheared cottage on the left). The perspective transformation of the image
pair of “Adobe” is plausible for all methods except GH. But, APAP and ELA fail to
prevent ghosting artifacts at the palm trees, caused by larger parallaxes. For the image
pair of “Garden”, all perspective transformation of the non-overlapping region provide
similar visual qualities. Nevertheless, GH, APAP, or ELA result again in ghosting arti-
facts, particularly at the foreground garden pavilion. Additionally, most of the the trees
in the background appear blurred compared to the proposed method.

The results of the quantitative evaluation can be summarized as follows: The pre-
sented method significantly improves image alignment of the overlapping region in all
scenes compared to the other evaluated methods. GH, APAP, and ELA have average
SSIM scores of 0.44, 0.54, and 0.61 and harmonic SSIM scores of 0.40, 0.48, and 0.56,
respectively. The proposed method achieves the best results, i.e. an average SSIM score
of 0.85 (ca. 39% to 93% increase) and a harmonic SSIM score of also 0.85 (ca. 52% to
113% increase). Moreover, the proposed solution also shows improvement in the SSIM
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Fig. 6: Image alignment evaluations using SSIM metric.

score for the non-overlapping region: Here, GH, APAP, and ELA have average SSIM
scores of 0.33, 0.47, and 0.57, with harmonic SSIM scores of 0.29, 0.46, and 0.55, re-
spectively. The presented solution achieves an average SSIM score of 0.63 (ca. 11% to
91% increase) and a harmonic SSIM score of 0.61 (ca. 11% to 110% increase). Regard-
ing runtime measurements, the described processing pipeline takes on average 27s for
feature matching, 14s for the overlapping region, 11s for the non-overlapping region
and 15s for stitching, resulting in a total time of 67s. The other evaluated methods are
on average faster: GH takes 23s, APAP 21s and ELA 29s for the total processing time.
However, their visual quality is significantly worse compared to the proposed method.

The presented solution has some limitations: The robustness of the stitching process
is primarily determined by the quality of the DFM results, particularly the homographic
decomposition. In this evaluation, the given default settings of DFM were used, as this
directly led to satisfactory results. But generally, incorrect parameter settings may cause
errors, like undetected parallax regions, typically leading to ghosting artifacts. In such
cases, manual re-parameterization of DFM would be necessary for improving quality.

5 Conclusions

In this paper, a novel image stitching method for image pairs with high depth complex-
ity and larger parallaxes is presented. The first stage of the proposed stitching pipeline
utilizes dense feature matching to generate a homographic decomposition of the image
space, including precise and dense feature correspondences between image pairs. Using
Delaunay triangulation of the matching set makes it possible to identify the overlapping
region for stitching. In the second stage, the homogenization algorithm is used to com-
pute a “parallax-tolerant” overlapping region. This is realized by detection and segmen-
tation of “inhomogeneous” sub-regions, which are typically caused by parallax effects.
Inhomogeneous image parts are not considered for perspective transformation, nor for
blending, during stitching. For perspective transformation of the parallax-free overlap-
ping region, a multidimensional per-pixel weight map of the target image is computed.
Additionally, color mapping assures uniform blending results for the inhomogeneous
image region. In the third pipeline stage, the non-overlapping region is partially cropped
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to exclude border areas that would produce visual artifacts after perspective warping.
Finally, the multidimensional weight map is extended to provide robust weighting for
perspective transformation even in the non-overlapping image region. The presented re-
sults on challenging real-world stitching datasets demonstrate that the proposed method
achieves accurate and robust image alignments, minimizing ghosting artifacts. It out-
performs the other evaluated methods in term of visual quality and structural similarity.
Future work includes multi-stitching of several images and performance optimizations.
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