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Abstract. Implicit generative models have gained significant popularity in the
realm of 3D data modeling and have recently demonstrated their efficacy in
both encoding and producing high-quality 3D shapes. However, prevailing re-
search predominantly focuses on generating outer shells of 3D shapes, ignoring
internal geometric details. In this work, we alleviate this limitation by present-
ing an implicit generative model that facilitates the generation of complex 3D
shapes with rich internal structures. Our proposed model utilizes unsigned dis-
tance fields, enabling the representation of nested 3D shapes by learning from
watertight and non-watertight data. Furthermore, We employ a transformer-based
auto-regressive model for shape generation that leverages context-rich tokens
from vector quantized shape embeddings. The generated tokens are decoded into
unsigned distance field values which further render into novel 3D shapes ex-
hibiting intrinsic details. We demonstrate that our model achieves state-of-the-art
point cloud generation results on the popular ShapeNet classes ’Cars’, ’Planes’,
and ’Chairs’. Further, we curate a dataset that exclusively comprises of shapes
with realistic internal details from the ‘Cars’ category of ShapeNet, denoted Full-
Cars. This dataset allows us to demonstrate our method’s efficacy in generating
shapes with rich internal geometry. The code is available at FullFormer.

Keywords: Implicit Generative Models · Unsigned Distance Field.

1 Introduction

Continuous representations of data as implicit functions are revolutionizing many re-
search areas of computer vision and graphics. The idea of having a continuously learned
implicit function to represent 3D data is efficient since these functions can represent di-
verse topologies while being agnostic to resolution [12]. Recently, neural networks have
been successfully utilized to parameterize such implicit functions, leading to a wide
range of applications such as geometry representation [29,1,36], image super-resolution
[10] or generative modeling [33,47,58].

Implicit representations for 3D shapes fall into two main categories: one captures
the outer surface using occupancy grids, while the other employs distance fields that
are able to encode both the surface and internal structure. Occupancy networks [29]
define the surface as a continuous decision boundary of a deep neural network classifier
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Fig. 1: This paper addresses generating 3D objects with rich internal geometric details.

whereas DeepSDF [36] represents a 3D surface using a signed distance field (SDF). A
significant benefit of using SDF is its easy extraction of surface enabled by the march-
ing cubes algorithm [26]. However, many implicit neural networks based on SDF or
Occupancy grids require 3D shapes to be watertight which are often not readily avail-
able. Atzmon et al. [1] propose a sign agnostic loss function to learn an SDF from
non-watertight data; however, their model requires careful initialization of the neural
network parameters and often misses thin structures. Another drawback of SDFs stems
from their inherent nature, i.e., 3D shapes are modeled as inside and outside. Recent
works, namely 3PSDF [8] and NeAT [28], introduce a ‘null’ sign in addition to the con-
ventional ‘in’ and ‘out’ labels of SDF. This enables the representation of surfaces that
can be both watertight and open. However, this approach requires denser sampling in
order to insert a null seperator layer between multiple surfaces to prevent artifacts.

An alternative implicit representation for complex, non-watertight shapes utilizes
unsigned distance fields (UDFs). In UDFs, a 3D shape is delineated through a regressive
function that predicts the unsigned distance of a given point in space to the nearest sur-
face of the 3D shape. This representation is capable of encoding multiple-layered inter-
nal 3D geometries since distance values are not limited to binary inside or outside flags.
However, standard marching cubes algorithm [26] cannot be used for extracting the sur-
face from a UDF since finding a zero-level set by is not possible with UDFs. Chibane et
al. [13] proposed algorithms that circumvent this problem and extract point clouds com-
prising of internal geometries from UDFs. Additionally, several studies have showcased
the application of UDFs for shape reconstruction [12,57]. Nonetheless, shape comple-
tion/synthesis or novel shape generation with UDFs remains unexplored. In this paper,
we present an approach that leverages UDF’s capability to represent nested 3D shapes
to learn and generate rich internal details of 3D shapes, while ensuring the high quality
and diversity of the generated samples.

Facilitating the learning of complex shapes requires a suitable encoding of distant
shape contexts. This is especially true when shapes with internal structures are consid-
ered, local shape context is not sufficient to model long-range relationships for example
between the overall height of a car and the shape or tilting of its seats (the shape of
seats in a sports car are quite genre specific). To facilitate the encoding of relation-
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ships at varying spatial distances, transformer-based models that leverage self-attention
are the method of choice [53,14]. Transformers are proven to be effective in modeling
data distributions and generating realistic samples in image generation [16], 3D shape
completion[55] and 3D generation tasks [31,11,59]. Unfortunately, transformers can
not directly learn from UDF representations since they rely on discrete token represen-
tations. Leveraging the advantages of transformers for shape generation with internal
structure is therefore non-trivial. In this paper, we contribute the following:

• Our paper presents a generative framework based on implicit neural networks that
generate 3D shapes with internal details while modeling long-range shape depen-
dencies as a sequence. With this type of shape-dependent sequencing, transformer-
based shape learning can be effectively integrated with UDFs.

• The generative model can be trained using both watertight and non-watertight 3D
data. Moreover, it has the capability of generating a variety of topologies, while
placing equal emphasis on external and internal aspects.

• We demonstrate that our method outperforms previous point cloud generation ap-
proaches in terms of qualitative and quantitative results on different ShapeNet cat-
egories as well as on the FullCars dataset, a dataset curated from ShapeNet ‘Cars’
with internal geometric details and non-watertight surfaces.

2 Related Work

Generative Adversarial Networks A standard generative model used in computer vision
applications is the generative adversarial network (GAN)[17]. Recent works [10,24]
have shown 3D shape generation combining implicit neural networks and generative
adversarial networks. However, the quality of output suffers due to mode collapse and
catastrophic forgetting stemming from the instability of GAN training [25,50].

Score-based Models Another form of generative models is denoising diffusion proba-
bilistic models, also known as score matching models [22,20,49]. These models learn
to model the gradient of the log probability density function with respect to the real
sample. Diffusion models have achieved state-of-the-art results in many downstream
tasks such as super-resolution, and data generation [45,3,6,58].

Likelihood-based Models Variational autoencoders (VAEs) and auto-regressive models
(ARs) are two commonly used likelihood-based models. Both aim to learn a probabil-
ity distribution over the input data. While VAEs are fast at inference time, the quality
of generated samples is often inferior compared to that of GANs[23,44]. Conversely,
auto-regressive models (ARs) are able to represent data distribution with high fidelity
but generate samples slowly [35,43,38,5]. To overcome these limitations, hybrid mod-
els have been proposed which combine auto-regressive transformer models and vector
quantized VAEs [16,55,31,59,11]. Our proposed method builds upon this hybrid model
setup and focuses on generating 3D shapes with internal structures. Our generation ap-
proach is related to previous works like ShapeFormer[55] and Pointcloud VQVAE [11].
ShapeFormer[55] utilizes a latent transformer architecture to learn from compact and
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discretely encoded sequences that approximate 3D shapes, specifically for 3D shape
completion utilizing occupancy fields. However, ShapeFormer does not address the task
of unconditional shape generation and works on only watertight data. Moreover, they
also employ a local pooled PointNet model [42] for feature extraction, which can limit
the expressiveness of the feature embeddings. Conversely, Pointcloud VQVAE[11] uses
a learned canonical space to align semantically similar point cloud categories into se-
quences and employs a latent transformer model similar to ShapeFormer to learn these
point cloud sequences. However, this method is restricted to point-cloud generation with
a fixed number of points. It lacks an implicit representation of 3D shapes, limiting their
ability to generate arbitrary resolution shapes or shapes with internal structures. In con-
trast, our method utilizes implicit representation of 3D shapes along with incorporating
locality inductive biases, as in CNNs, in extracted features that allow for tractable fea-
ture embeddings. Therefore, we opt for using an IF-Net-based [7] encoder. Moreover,
since our method utilises UDFs, it is capable of generating novel shapes with internal
structures and isn’t constrained by watertight-only models.

Implicit Neural Generative Models In recent years, neural implicit networks have
gained significant attention for their efficacy in 3D representational learning by recon-
structing complex 3D shapes [37,30,1,41,48,46,61,21,19,8,57]. While several models
have explored implicit representation for 3D surface reconstruction, only a few have
used it for 3D model generation [58,19,59,31]. In general, these works rely on a type
of neural representation that encapsulates a 3D surface by taking a spatial coordinate
value as input and outputs a parameter: ones or zeros for points inside or outside the
surface [30] or a signed distance from the surface [37]. However, as mentioned before,
these representations do not preserve the multi-layer geometry of 3D shapes. Recently,
NDF [13] and GIFS [57] have demonstrated that UDFs are capable of representing in-
ner details within 3D models. Despite its advantages in representation power, learning
a UDF is more challenging than an SDF. UDF prediction is a regression problem while
SDF and occupancy field are usually classification problems. This makes the problem
of training a UDF non-trivial, requiring sophisticated regression algorithms. Direct re-
placement of SDF with a UDF is not expected to produce viable results immediately.
Additionally, due to the lack of a sign in the UDF representation, the model requires a
sign-agnostic loss function which has to be carefully initialized and therefore introduces
further difficulty than learning an SDF [1,8]. In this paper, we propose a deep implicit
generative framework that utilizes UDFs to generate high-quality 3D models with inter-
nal geometric structures. Our work highlights the potential of UDFs in generating rich
3D models. This has significant implications for various applications, such as product
design, robotics, CAD designs, and medical imaging, whereby internal geometries are
crucial for accurate modeling and simulation.

3 Method

The objective of this work is to leverage the representational power of unsigned distance
fields (UDF) in order to implicitly model 3D shapes while retaining their internal geo-
metric details. To achieve this goal, we utilize the learning capabilities of transformers
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Fig. 2: Approach: Key ingredients of our pipeline are vector quantized autoencoder
(VQUDF), unsigned distance field (UDF), and latent transformer. The first stage is
learning a VQUDF that takes voxelized point clouds as input to a CNN-based encoder
and utilizes an implicit decoder to output a UDF of the 3D shape. UDF ensures rich
internal details are retained in a continuous data representation. Latent codes from the
learned VQUDF are used to train an autoregressive transformer. This transformer learns
to generate novel latent codes at test time. An implicit decoder then decodes generated
latent codes to output a UDF. A 3D shape is then rendered from the UDF as a more
tractable data format such as a point cloud.

and incorporate UDF-based implicit function learning to develop an autoregressive gen-
erative model capable of generating 3D shapes with internal structures. However, the
complexity of the autoregressive generation model increases considerably with the in-
put sequence length [53]. This problem is exasperated when the data representation is a
dense 3D model. Therefore, instead of representing a 3D model as voxels, point clouds,
or discrete patches directly, we learn a compact and discrete representation whereby a
shape is encoded using a codebook of context-rich parts. This allows an autoregressive
transformer model to capture long-range interactions between these contextual parts
and effectively model the distributions over the full shapes.

Figure 2 details the complete framework of our approach. Our method can be sec-
tioned into two parts. First, we describe a form of an autoencoder, namely Vector Quan-
tized Unsigned Distance Field (VQUDF), which learns a context-rich codebook, as de-
tailed in Sec. 3.1. Then we present the latent transformer architecture as a generative
model capable of producing novel shapes, as outlined in Sec. 3.2.

3.1 Sequential Encoding with VQUDF

A 3D shape is represented as a point cloud input denoted by X ∈ RN×3. To harness
the power of transformers in the generation, we encode X into a discrete sequence of
tokens. This discrete sequence must encapsulate the complete geometric information of
the 3D shape. Inspired by ideas from [52,55,31], we formalize the encoder, codebook,
and decoder architecture for generating 3D shapes with internal geometry using UDFs.
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Encoder: To generate 3D shapes with internal structures using transformers, we require
a compact and discrete representation of the input shape that maintains high geometric
resolution. The input to our encoder is a sparse voxelized point cloud defining a 3D
shape. When dealing with voxel data representations, capturing local spatial context
is essential since the correlation between neighboring voxels significantly impacts the
overall shape of the object. CNNs are well-suited for capturing prior inductive bias
of strong spatial locality within the images [15]. By incorporating local priors from
CNNs, we can effectively capture the spatial context of the input data and encode it into
a compact feature grid utilizing ideas from neural discrete representation learning [52].
To achieve this, the first step is to employ a CNN-based feature extractor E called IF-Net
[13]. IF-Net takes a sparse voxelized point cloud X and maps it to a set of multi-scale
grid of deep features F1, ...,Fm s.t. Fk ∈ FK3

k and Fk ∈ Rc. Note that the resolution
K reduces, and the number of channels c increases as k increases. For tractability, we
interpolate feature grids F1, ...,Fm−1 to the scale of final feature grid Fm using trilinear
interpolation. This provides us with a good trade-off between model complexity and
shape details. A concatenation of F1, ...,Fm along the channel dimension results in a
compact feature grid Z ∈ RK3×C , i.e. Z is a continuous latent feature representation.

Quantization: A discrete description of the world can aid learning by compressing in-
formation in many domains, such as language or images [52,32,9]. We posit that 3D
models are no exception and can greatly benefit from discrete representations. In addi-
tion, to utilize the generative transformer model, the input shape is preferably a discrete
sequence. Therefore, we employ vector quantization to transform the continuous la-
tent feature representation Z into a sequence of tokens T using a learned codebook
B of context-rich codes B = {bi}Vi=1 ⊂ Rnz where nz is the length K × C of a
code. Following a row-major ordering [16], each feature slice zi ∈ Z is clamped to the
nearest code in the codebook B using equation 1, fig. 2, which results in a quantized
feature grid Ẑ. A sequence of tokens T is then defined as the ordered set of indices
(ti)∀i ∈ {1, .., |T |}.

ti = argminj∈{1,..,V }∥zi − bj∥ (1)

Decoder: As stated earlier, we aspire to learn an implicit representation of shapes to
benefit from properties of such models, for example, no watertight shape restrictions,
arbitrary resolution, and encoding internal structures. To achieve this, we train a decoder
to output an unsigned distance field UDF(p,S) = minq∈S∥p − q∥ which is a function
that approximates the unsigned distances between the sample points p and the surface of
the shape S. Formally, the decoder is defined as a neural function D(Ẑ,p) : RK3×C ×
R3 7→ R+ that regresses the UDF from a set of point p conditioned on the latent discrete
feature grid Ẑ. The dense point cloud algorithm provided by Chibane et al. [12] is used
further to convert UDF to a final point cloud denoted by X̂.

Training VQUDF: The training process involves learning the encoder E , codebook B,
and the decoder D simultaneously. The overall loss function is denoted in equation (2).

LVQUDF(E ,B,D) =∥ UDF(p,S)− UDFgt(p,S) ∥22 +Lc (2)
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The first term denotes the reconstruction loss, which is computed as the difference be-
tween predicted and ground truth UDFs. This method is different from the commonly
utilized approach of computing loss between predicted and true point clouds. The sec-
ond term Lc denotes the commitment loss in equation (3).

Lc =∥ sg[E(X)]− Ẑ ∥22 + ∥ sg[Ẑ]− E(X) ∥22 (3)

Different from vanilla NDF training, our pipeline has a non-differentiable quantiza-
tion operation. Following previous works [2,52], we utilize a straight-through gradient
estimator to circumvent this problem. Under this approach, gradients are simply copied
over from the decoder to the encoder. This method ensures joint training of the code-
book, the encoder, and the decoder.

3.2 Generating a Sequence of Latent Vectors

Latent Transformer: Transformers have shown tremendous performance in generat-
ing images by modeling them as a sequence of tokens and learning to generate such
sequences [39,34]. Transformers are unconstrained by the locality bias of CNNs al-
lowing them to capture long-range dependencies in images. 3D models with internal
structures also exhibit long-range dependencies, for example, the number and shape
of seats in a car depend on the body being either a sedan or a sports car. Previous
works [60,18,54,55,31,11] have successfully demonstrated capturing these dependen-
cies using transformers for 3D models. We represent 3D shapes as a sequence of to-
kens T = (t1, ..., t|T |) resulting from our trained VQUDF framework. Recall that
each token ti is an index of the closest codebook latent embedding to the continu-
ous latent feature grid. The generation of shapes is modeled as an autoregressive pre-
diction of these indices. A transformer learns to predict the distribution of the next
indices given prior ones. The likelihood of the complete sequence T is described as
p(T ) =

∏|T |
i=1 p(ti|t1...i−1).

Transformer Training: The generation of latent codes as a sequence of tokens using
transformers is highlighted in Fig. 2. The learned weights of the trained VQUDF au-
toencoder are frozen before the training of the transformer. VQUDF is first used to
create a training dataset of 3D shape latent embeddings. These latent embeddings are
used in the training of the transformer. The training objective for generation is maxi-
mizing the log-likelihood of tokens in a randomly sampled sequence to represent the
3D shape p(T ):

LTransformer = Ex∼p(x)[−log p(T )] (4)

After training, this model starts with the [START] token and predicts the next indices
forming a complete sequence T until a [END] token is predicted. By mapping indices
in the sequence T back to the corresponding codebook entries, a discrete latent feature
grid Ẑ is recovered. The 3D shape is then reconstructed using the implicit decoder D,
which results in a UDF from which point cloud X̂ is extracted as in [13].
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4 Experiments

This section thoroughly evaluates our proposed approach on the standard object cate-
gories of Cars, Planes, and Chairs from ShapeNetCore [4] dataset. Additionally, we
curate a new dataset named ’Full Cars’, which constitutes a subset of the Cars cate-
gory of the ShapeNetCore v2 dataset, on which we evaluate our proposed approach
and competing methods on their ability to generate shapes with internal structures. Our
experiments demonstrate our method’s effectiveness in generating high-quality shapes
with internal structures. We compare our point cloud generation results against multi-
ple SOTA baselines and show superior qualitative and quantitative results on the task of
shape generation. More qualitative results along with an ablation study evaluating the
use of UDF over SDF are provided in the supplementary material.

4.1 Implementation Details

We train our models in two stages. First, we train the VQUDF module, followed by a la-
tent transformer module. For training, we utilize stock hardware comprising one Nvidia
RTX Quadro GPU with 48GB of VRAM. All code is written in PyTorch [40] whereby
a portion is acquired from open repositories of [13,16]. For training both modules, we
use a batch size of 1 and the Adam optimizer. For VQUDF training, we employ a learn-
ing rate of 1e-6 and ReLU activation, whereas the transformer’s training uses a learning
rate of 4.5e-6. Furthermore, the transformer has 12 layers and 8 attention heads. The
length of the input sequence to the transformer model is set as 7952; the codebook size
is 8192, with each codebook having a dimensionality of 512.

Datasets We conduct experiments on the standard object categories of Cars, Planes,
and Chairs from ShapeNetCore [4] dataset. Additionally, we curate a new dataset named
’Full Cars’, which constitutes a subset of the Cars category of the ShapeNetCore v2
dataset. The ’Full Cars’ dataset includes cars with diverse and realistic internal ge-
ometry such as seats, steering wheels, shift sticks, and other internal structures. The
primary objective of this dataset is to demonstrate the capability of our model in gen-
erating novel and realistic shape interiors. Note that there is a strong interdependency
between internal structures and outer car shapes. Further descriptions of datasets and
additional training details, including the architecture of our model, are presented in the
supplementary material.

4.2 VQUDF Reconstruction Performance

The input point cloud is sampled and voxelized before feeding into the VQUDF en-
coder. Table 1 summarises the number of sampled points and voxel resolution across
different datasets. Recall that the input 3D shape is encoded into a feature grid Ẑ where
each channel comprises a feature block of resolution K3. The quality of encoded infor-
mation and generation capability depends on the dimensionality and resolution K of the
3D latent feature grid Ẑ. Fig.3 shows reconstruction results of the VQUDF module on
the Full Cars dataset with different values of K such that resolution of the 3D latent fea-
ture becomes Ẑ ∈ R643×C , Ẑ ∈ R163×C and Ẑ ∈ R83×C respectively, where C is the
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number of channels. Note that the fidelity of internal geometries increases progressively
with the dimensionality K of Ẑ. However, increased K results in a large quantized se-
quence length T making transformer training difficult. Hence, a good trade-off between
geometrical fidelity and memory footprint is achieved by selecting Ẑ ∈ R163×C which
is then processed into a tractable sequence of tokens to generate shapes with internal
details.

Fig. 3: Reconstruction Results: Our model reconstruction results with different latent
space resolutions 643, 163 and 83 respectively (left to right).

Table 1: Number of sampled points and voxel resolution during training VQUDF across
different datasets. The Full Cars dataset used for evaluating the ability of models to
generate shapes with internal structures is curated by us from ShapeNet Cars.

Dataset Points Sampled Voxel resolution

ShapeNet Cars 10000 256³
ShapeNet Planes 5000 32³
ShapeNet Chairs 4000 32³

Full Cars 10000 256³

4.3 Baselines

We evaluate our approach against well-established baselines as well as current SOTA
methods for 3D point cloud generation. The first method we compare against is Graph
Convolution GAN [51], which relies on GAN-based generation and employs localized
operations in the form of graph convolutions to generate point clouds. Another method
of comparison is denoising diffusion probabilistic models [27] for point cloud genera-
tion. Lastly, we compare against PointFlow [56], which utilizes normalizing flows for
point cloud generation. These models naturally carry the ability to learn inside details
of 3D models, provided that they have been trained on datasets with internal structures.
However, they do not utilize an implicit continuous representation to capture internal
details. Hence, these methods are constrained not only by a fixed number of points
in generated shapes but also by their capacity to accurately represent the interiors of
predicted 3D shapes.
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4.4 Metrics

For quantitative evaluation, we use three different metrics following previous works.

MMD: Minimum matching distance (MMD) indicates the faithfulness of generated
samples with real data. A lower MMD indicates that generated samples are realistic
towards ground truth samples

COV: Diversity is an important aspect of generative models. A high coverage score
(COV) indicates that the model does not suffer from mode collapse and has high sample
diversity.

JSD: Jenson-Shannon divergence (JSD) computes the symmetric similarity between
distributions of generated samples and reference samples. A lower value of JSD is de-
sirable. However, this metric is dependent on the selection of the reference set.

4.5 Qualitative Results

In this section, we show the qualitative performance of our generative model on the
considered datasets.

ShapeNet: SOme samples of generated point clouds with 2048 points from our model
and comaparative approaches for classes chairs and airplanes are presented in Fig. 4.
We highlight that our model does not rely on any priors in the form of preset tokens in
the input sequence, thus ensuring the complete unconditioned generation of 3D shapes.
The performance of our method is apparent in terms of higher fidelity and realistic
shapes generated. We further note that immense diversity is present in the generated
shapes, whereby all samples in Fig. 4 are of distinct visual design. More results of gen-
erated mesh samples of Planes and Chairs are provided in the supplementary material.

FullFormer (Ours) [51] [27] [56]

Fig. 4: Outer Hull Generation: Our results show high-quality point cloud generation
when trained on object categories of chairs and aeroplanes of the ShapeNet dataset.
We highlight clear visual improvement over previous methods, namely GraphCNN-
GAN [51], Diffusion [27] and PointFlow [56].
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Full Cars: We experiment on the Full Cars dataset to showcase the veracity of our
approach’s key feature to generate high-fidelity outer shells with intricate internal geo-
metric details. The qualitative results of randomly generated cars are presented in Fig. 5
demonstrating the efficacy of our model in generating samples with rich internal geo-
metric structures. Additionally, generated cars in Fig. 5 demonstrate a remarkable level
of diversity, for example, varied genres of cars with different numbers of seats. We also
present in Fig. 6 comparative generation results having uniformly sampled 2048 points
from Diffusion [27], PointFlow [56] and our FullFormer model. We retrain compara-
tive methods on the ‘Full Cars’ dataset by preprocessing input data as required for those
methods. Our approach achieves a clear visual superiority over comparative methods,
which fail to generate any discernible internal structures. It is also important to note
that shapes in the training data lack dense internal geometries. Despite this limitation,
our method is able to learn a general model which is capable of generating shapes with
internal structures given noisy real-world raw data.

Fig. 5: Generation: Diverse generation results from our Fullformer model trained on
the Full Cars dataset exhibiting internal structures. A high degree of detail is clearly
visible in the generated dense point clouds. Note that, not only seats conditioned on car
genre, but also minute details such as steering wheels are generated. High point clouds
quality further allows for surface meshes (bottom) to be computed of the non-watertight
shapes with internal structures.

4.6 Quantitative Results

In this section, we present a quantitative evaluation of our model’s performance in
point cloud generation. The metrics discussed in section 4.4 are tabulated in Table
2. Our method achieves state-of-the-art performance on all the metrics for the ‘Full
Cars’ dataset, validating the capability of FullFormer in generating complete shapes
with rich insides. High coverage and low JSD further demonstrate that generated mod-
els exhibit high diversity which we also observe visually. Moreover, we achieve the
best performance in MMD and coverage across all classes of cars, chairs, and planes
of the ShapeNet dataset compared with other baselines. While it is true that FullFormer
appears to achieve higher JSD values than PointFlow [56] and Diffusion [27] for the
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[27] [56] [51] FullFormer (Ours)

Fig. 6: Generation Comparison: From left to right (Diffusion [27], Point Flow [56],
Graph-CNN GAN [51], FullFormer (Ours)). Our model (with 163 latent space resolu-
tion) shows high-quality internal structure generation results compared to other men-
tioned models. It is apparent that other comparative models do not achieve discernable
internal structures in generation results. All point clouds in this figure are sampled to
2048 points.

ShapeNet dataset, however qualitative results continue to show diversity in all the con-
sidered datasets. Therefore the lower score of JSD for the ShapeNet dataset is hypoth-
esized to be a cause of reference set selection.

4.7 Limitations

Unlike the high-fidelity achieved on outer shells, generated internal details exhibit lower
quality. A sampling of the feature space limits the details of the shape’s geometry. Our
model evaluation is also constrained by the scarcity of available shape datasets with rich
internal structures. Furthermore, we used off-the-shelf methods to mesh our dense point
clouds which degraded the quality of our final results. Particularly fine details and thin
structures are of generated shapes hard to assess from generated point clouds. This is
due to a lack of direct algorithms to extract the surface of 3D shapes from an unsigned
distance fields.

Table 2: We quantitatively compare the point cloud generation results of our method
with GraphCNN-GAN [51], Diffusion [27] and PointFlow [56]. We report minimum
matching distance (MMD), coverage score (COV), and Jenson and Shannon divergence
(JSD) for comparison. We use Chamfer distance (CD) for MMD and COV calculations.
MMD scores are multiplied by 103 and JSD are multiplied by 10−1. Our proposed
FullFormer improves consistently over all previous methods in terms of MMD and
COV. It also improves over previous methods in terms of JSD on the Full Cars dataset.
Dataset GraphCNN-GAN [51] Diffusion [27] PointFLow [56] Ours (FullFormer)

MMD↓ COV↑ JSD↓ MMD↓ COV↑ JSD↓ MMD↓ COV↑ JSD↓ MMD↓ COV↑ JSD↓

ShapeNet Cars 3.18 16 4.67 1.4 17.7 2.21 1.28 29.67 3.16 1.13 29.72 2.29
ShapeNet Planes 1.1 31.09 1.75 0.98 36.73 0.65 1.41 35.87 1.06 0.92 37.37 0.83
ShapeNet Chairs 4.213 33.5 1.24 3.79 36.2 0.42 4.19 33.23 0.82 3.79 37 1.06
Full Cars 2.32 20 3.81 1.24 21.23 2.83 1.18 24.85 3.39 0.93 25.07 2.72
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5 Conclusion

In this work, we present FullFormer, a novel two-stage generative model designed to
generate 3D objects with intricate internal structures. Our approach employs a vector
quantized autoencoder (VQUDF) to learn 3D shape geometry in the first stage and
employ a latent transformer model in the second stage for shape generation. This la-
tent transformer is trained autoregressively on indices of quantized shape embeddings
learned by the VQUDF, making it computationally efficient. Consequently, the trained
transformer can generate latent codes unconditionally. Generated codes are fed into a
learned decoder (VQUDF) to output UDF representation from which 3D shapes are
retrieved ensuring that generated shapes have details of internal structure and high-
fidelity outer surface at arbitrary resolution. We further demonstrate superior qualita-
tive and quantitative point cloud results compared to previous state-of-the-art methods.
The ability to generate high-quality 3D shapes has implications across various domains,
from computer graphics and virtual reality to manufacturing and design, paving the way
for exciting future research in the field.
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