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Abstract. The quality of land use maps often refers to the data quality,
but distributional uncertainty between training and test data must also
be considered. In order to address this uncertainty, we follow the strategy
to detect out-of-distribution samples using uncertainty maps. Then, we
use supervised machine learning to identify those samples. For the inves-
tigations, we use an uncertainty metric adapted from depth maps fusion
and Monte-Carlo dropout based predicted probabilities. The results show
a correlation between out-of-distribution samples, misclassifications and
uncertainty. Thus, on the one hand, out-of-distribution samples are iden-
tifiable through uncertainty, on the other hand it is difficult to distinguish
between misclassification, anomalies and out-of-distribution.

Keywords: Potsdam dataset · error detection · semantic segmentation.

1 Introduction

1.1 Motivation

A major use case of semantic segmentation in remote sensing is the generation
of land cover maps. Since these maps serve as a basis for derived products and
also political decisions, they must be up-to-date, complete, and trustworthy.
While up-to-dateness of the map can be satisfied by the temporal availability of
the image data, completeness and trustworthiness mean that the object-related
classes correspond to the actual object types in the real world. Hereby, both
data and model quality influence the completeness and trustworthiness.

Moreover, completeness in the use of semantic segmentation requires that the
world of classes is closed. However, especially while working with high-resolution
data from urban scenes, there are out-of-distribution (OOD) samples and anoma-
lies. These samples are usually unified into a particular class, which is called
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“clutter”, “void”, “urban asset”, or similar [21,23]. Due to limited reference data,
which also may include mislabelings, OOD samples may occur in the test data,
but do not belong to any object-specific class in the training samples. Anomalous
pixels, in contrast, are present in both, training and test data, but the appear-
ance of anomalous pixels differs from class representing training samples, e.g.
image defects.

1.2 Problem statement

Due to the mixing of OOD and anomalies in a joint heterogeneous “clutter”
class, this class is often misclassified. However, anomalies and OOD samples are
not the only cause of misclassifications. Thus, reasons for misclassifications are
among others: (i) incorrect ground truth labels, (ii) anomalies in the images, (iii)
OOD samples or (iv) model overfitting. This mix of different sources of misclas-
sifications makes detection and understanding of OOD samples more complex
and without specific labeling, the separation of OOD samples is difficult.

Recently, a publication establishing correlation of OOD, anomalous samples
and misclassifications based on uncertainty came out [19]. The next logical step
would be establishing a workflow allowing for prediction on whether an uncer-
tainty corresponds to an OOD sample, to a misclassification, or to a false alarm.

To do this, it is crucial to understand the two different types of errors. First,
not all uncertain predictions are incorrect nor anomalous (false positives, error
type 1) and second, not all misclassifications are necessarily uncertain (false
negatives, error type 2). To address both types of errors, error detection strategies
depend on the task [19]. When undetected misclassification is costly (as in the
case of credit card fraud), one must choose a threshold for the false-positive error
generously and put more effort into interactive detection of the false-negative
errors. Contrarily, if addressing possible misclassifications is more costly, as in
surveillance tasks, then too high false alarm rates are undesirable [25]. In addition
to uncertainty, other attributes can be helpful in characterizing OOD samples
and supporting their identification.

1.3 Our solution in a nutshell

The aim of this work is to characterize OOD samples for identification with differ-
ent machine learning methods. In addition, two semantic segmentation models
are compared in terms of their ability to identify OOD samples. We assume,
the OOD samples are part of a “clutter” class in the data. After inference with
Monte-Carlo dropout [8], a uncertainty map is computed and thresholded. The
threshold value is derived automatically to segment the pixels exhibiting higher
uncertainties into connected components. These components have radiometric
and geometric features, which, in turn, represent an input for conventional clas-
sifiers such as Random Forest [3] or Import Vector Machines [30]. The classifier
outputs binary labels for regions to belong to the possible OOD samples and
anomalies or to be misclassified.
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The remainder of the paper begins with the related work in Section 2, followed
by the methodology description in Section 3. Section 4 describes the experimental
setup that provides the basis for the results in Section 5. Finally, Section 6
contains conclusions and future work.

2 Related Work

The deep learning methods are very powerful, but they have the dubious repu-
tation to be black boxes taking rather non-transparent decisions. Therefore, in
recent years, deep learning models have been increasingly evaluated regarding
uncertain predictions. This trend can also be observed in the remote sensing
domain [15,4,6]. To identify errors and especially find their sources, observing
uncertainty is not enough. According to the current literature, this leads to
anomaly detection and detection of OOD samples.

Anomaly detection is more of an unsupervised task because we do not know
a-priori what the anomaly is [25]. Therefore, architectures specialized in the
anomaly detection task are frequently applied [29]. Examples of unsupervised
strategies for retrieving anomalies include mixture-model-based [11], density-
based and reconstruction-based approaches [29]. However, semi-supervised or
even fully supervised methods are not completely uncommon. For example, [24]
investigate a component based on so-called meta-classification in the autonomous
driving domain and [27] use Random Forest (RF) to classify thermal anomalies
versus shortcomings of a thermal simulator.

The survey of [10] points out that in addition to model and data uncertain-
ties, there is also a distributional uncertainty. This distributional uncertainty
is related to OOD samples. To solve the difficulty of distinguishing between in-
domain and OOD samples, several authors cited in [10] identify these samples by
perturbing the input data [16], or analyzing the softmax probabilities [13], possi-
bly with relaxations of the neural network model, for example using dropouts [4].
To overcome the issues the limited amount of ground truth information and the
closed world assumption, the OOD detection becomes important [26,9].

Information about errors and causes, such as OOD samples, are important
to improve the quality of land cover maps. However, the results of the semantic
segmentation are desired as well [1]. To our knowledge, there is no approach that
provides semantic segmentation and at the same time methods to identify the
OOD samples in remote sensing. Thus, our contribution contains:

1. dual task pipeline with semantic segmentation and uncertainty mapping,
2. quantitative analysis of the correlation between uncertainty and possible

errors and
3. characterization and identification of OOD samples using machine learning.

3 Methodology

By using Monte Carlo dropout, the average softmax outputs of an input image
over multiple inferences can be interpreted as probabilities [8]. The resulting
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Fig. 1: The flowchart visualizes the processing steps. Based on the probabilities
from the deep learning models, the semantic map, and the uncertainty heatmap
are generated. By analyzing the histogram distribution, the heatmap is binarized,
and the connected components are selected and assigned to a class OOD.

varying inferences can be evaluated in two ways: the variance between the in-
ferences and, from the mean of the inferences, the ambiguities of the class prob-
abilities. For the identification of the OOD regions, we use such ambiguities.
Ideally, the maximum probability is near one while all other classes’ probabili-
ties are near zero. The class with the maximum probability is selected for the
semantic segmentation task. In contrast, if the class probabilities are uniformly
distributed, the class decision is subject to the greatest uncertainty. According
to Figure 1, we determine the deviations from the ideal case by calculating the
related uncertainty (Section 3.1). To characterize and identify the OOD samples,
a meta-classification on the component level is performed using Random Forest
with geometric and radiometric features (Section 3.3). To use such components
for classification, the uncertainties are binarized by the histogram-based thresh-
old (Section 3.2). For evaluation, the labeling described in Section 3.4 allows to
detect the errors of the uncertainty and OOD maps.

3.1 Uncertainty Determination

In contrast to using common uncertainty metrics such as entropy [6], [4] propose
a confidence metric which was originally developed in the context of depth maps
fusion [18] and adapted by us to measure uncertainty [19]. The confidence has a
value range from zero to 1

C where C denotes the number of classes. By subtract-
ing the confidence values from one, the confidence is interpreted as uncertainty

U = 1−


C∑

c=1

exp


−(s− min

c∈C
(s))2

Q0.75

[
0.5 · (s− min

c∈C
(s))

]2



−1

, (1)
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where Q0.75 is the 75%-quantile and adjusts the uncertainty values. Further,

s = sc,h,w = min(− log2(P c,h,w), 2048) (2)

is used in (1) using the truncated negative logarithm of the averaged predicted
probabilities for each class c, pixel position h and w. The upper bound 2048
avoids numerical problems when using 16-bit values.

3.2 Histogram Analysis

For analyzing the correlation between the uncertainty values from (1) with OOD
samples and misclassifications, the corresponding distribution is determined. To
calculate the distribution, we represent the uncertainty values as a discrete set
X = {x0, x1, . . . , xN}, whereby x0 = min(U) and xN = max(U) with U from 1.
For n ∈ {1, . . . , N}, we have xn = x0 + nh with bin width h and the number
of bins N + 1. Let f, g : xn ∈ X 7→ R be two functions describing a histogram
with bin width h, chosen in the way that xN = max(U), and the number of bins
N +1. Hereby, f represents the distribution of mask pixels which are related to
OOD samples or misclassifications and g the complement mask pixels. The bin
height is defined from the frequency m as density

f(xn) =
mn∑

i mn · h
(3)

and for g analogously. We call xk an intersection of f and g, and it is defined by
the change of the sign

⇔
∃k : f(xk−1) ≥ g(xk−1) ∧ f(xk) < g(xk)

∨
∃k : f(xk−1) ≤ g(xk−1) ∧ f(xk) > g(xk).

(4)

Based on [19], the first intersection xk∗ is used as a threshold for binarization of
the uncertainty.

3.3 Connected Component Analysis

Based on the binary classification with the threshold from (4), median filter and
morphological opening is applied to avoid isolated pixels. The resulting uncer-
tainty map is segmented based on connected components. For each component,
features are computed and used to characterize the different error sources in a
machine-learning framework.

The problem is non-linear and the features correlate strongly. In order to
cope with the non-linearity, the RF classifier [3] is known to be quite suitable;
it can also cope with correlated features to a certain extent. For example, if one
uses a few features for one decision tree and increases the number of decision
trees, then the trees are supposed to be less correlated and the overall accuracy
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Table 1: If the reference mask and the uncertainty map is unequal this correspond
with error type 1 and 2.

¬M M

¬B background error type 2 (false negative)
B error type 1 (false positive) identified

increases. This strategy, theoretically well-founded in [14] and applied, among
others, in [27], has been adopted in our work as well. The classification of the
components leads to a feature importance, used to characterize the OOD map,
which shows the overlap between uncertainty and “clutter” class.

We are motivated to compare RF with a classifier that is able to cope with
correlated features. To this end, the Import Vector Machines classifier (IVM)
was applied. This classifier was developed by [30] and represents an alternative
to Support Vector Machines in the sense that the output is probabilistic and is
therefore comparable with that of RF. We used the implementation of [22] with
radial-bases functions for kernel trick. The results are shown in Supplementaries.

3.4 Evaluation

For evaluating the distributions similarity, the Kullback-Leibler (KL) divergence
is used at the maximum density of the mask class xmax from the histograms
in (3) [2]

KL = g(xmax) · log
(
g(xmax)

f(xmax)

)
− g(xmax) + f(xmax) (5)

xmax = argmax
x∈X

f(x). (6)

Furthermore, the evaluation of the resulting maps, that means the semantic
segmentation, the uncertainty and the OOD maps, use the confusion matrix.
This confusion matrix leads to F1-scores and overall accuracy, but also to the
amount of occurrences of error type 1 and 2. Let B be a binary uncertainty map
based on the threshold from (4) and M a mask used as reference. The results
of the confusion matrix are labeled accordingly with Table 1. Furthermore, the
Cohen’s kappa coefficient is used to measure the correlation between detected
OOD samples and clutter.

4 Experimental Setup

The presented methodology is tested on the ISPRS Potsdam dataset [23]. Before
using this data for deep learning, the sample images are prepared as in [19].
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4.1 Dataset Preparation

First, the dataset is split into training, validation, and test data. The multi-
spectral images with channels red, green, blue, and near-infrared are used. How-
ever, to process images of size 6000 × 6000 pixels, they are divided into small
patches of 512 × 512 pixels. The test data are tiled by an overlap of 50 pixels.
In the reference, six classes are defined: impervious surface, building, low veg-
etation, tree, car, and clutter. In this contribution we are mainly interested in
the latter class which contains the OOD samples. In total, 818 training and 243
validation patches are randomly selected. For testing, a total number of 1350
patches is used.

4.2 Deep Learning Models

For the experiments, we use a U-Net [20] and DeepLab V3+ [5] model, which is
referred to as DeepLab in this work. For both models, a ResNet 101 encoder [12]
with ImageNet [7] initialization is used. To be able to use multi-spectral images
with more than three channels, the first convolution layer is changed accordingly.
For training, the AdamW optimizer [17] and the cross entropy loss function are
used. The hyperparameter settings are a learning rate of 0.001, a weight decay
of 0.01, a batch size of 9, a dropout rate of 0.5, and 300 epochs. The SMP
Toolbox [28] is used for the model construction. Data augmentation is applied
with 90◦, 180◦ and 270◦ rotations. During testing, we evaluate the models with
100 Monte-Carlo inferences.

4.3 Evaluation Strategy

For each model, two different masks are used to generate the histogram dis-
tributions: the clutter pixels extracted from the ground truth and the model
predictions compared with the ground truth, representing misclassifications. In
addition, we select 75% of our connected components as training data and the
rest as test data. For feature extraction, we use the multi-spectral image channels
and entropy features with four different kernel sizes as radiometric features. The
mean value and variance over all pixels lying in this component are calculated.
To these radiometric features, we add two geometric properties of the connected
component, namely area and eccentricity, yielding 18 features in total. Train-
ing data is further balanced in order for the learner not to overfit towards the
most frequent class. The ratio between the number of training examples of the
most and least frequent class was set to 1, 1.5, 2.5, and 4. The components are
evaluated with RF using 10, 25, and 50 trees.

5 Results and Discussion

5.1 Semantic Segmentation

For the semantic segmentation task, both models provide similar quantitative
results (Table 2). Looking closely at the differences between U-Net and DeepLab
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Table 2: The quality of the semantic segmentation is evaluated by the overall
accuracy and the F1 values of the test dataset using the U-Net and DeepLab
model. In addition, the class frequency from the ground truth is presented. The
results are given as a percentage value.
model overall impervious building low tree car clutter

accuracy surfaces vegetation
ground truth frequency 38.4 24.9 16.5 12.3 2.2 5.6
U-Net 86.2 90.4 92.9 80.6 81.1 89.8 48.8
DeepLab 86.5 90.5 92.8 81.5 80.9 88.2 53.1

(a) (b) (c) (d)

Fig. 2: Visualization of the semantic segmentation: (a) RGB input, (b) ground
truth, (c) prediction from U-Net, and (d) prediction from DeepLab.

for the different classes, U-Net performs better (+1.6 %) for the car class, which
is the least frequent class and can be considered as a small object class with
high-contrast and high in-class variation. In contrast, in the clutter class (red
pixels), DeepLab outperforms U-Net by 4 %. The differences in the other classes
are below 1 %. Looking at the clutter class in the example displayed in Figure 2,
anomalies at the building edges represented by facade pixels could not well pre-
dicted (Figure 2c, 2d) compared to the the ground truth (Figure 2b). Although
the F1 score for clutter is better for DeepLab, U-Net predicts the garbage cans
better in this example. This shows the difficulty of prediction of OOD samples
and anomalies. For this reason, the following analyses focus on this clutter class
which contains the OOD samples.

5.2 Uncertainty Analysis

As mentioned in Section 3, the mean value can be calculated from the standard
deviations per class from several inferences. In our results, this mean is 0.011
for DeepLab and 0.005 for U-Net. Therefore, the predicted probabilities can be
considered reliable.

The class prediction, in contrast, has ambiguities represented by the uncer-
tainties from (1). The relationship between uncertainty and clutter is displayed
by the density distributions in Figure 3. The highest uncertainty values corre-
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Fig. 3: The distributions of the U-Net and DeepLab uncertainties with the mis-
classification mask are presented on the left and with the clutter mask as in [19]
on the right. The imbalance of the data is considered by calculating density.

Table 3: The KL divergence measures the similarity of the uncertainty distri-
butions for U-Net and DeepLab. The intersection point at the misclassification
mask is used as a threshold for the connected component formation.
model KL clutter mask KL misclassification mask threshold
U-Net 0.95 3.19 0.434
DeepLab 1.01 3.62 0.508

late with clutter. However, the same correlation occurs between uncertainty and
misclassifications. Thus, clutter and misclassification are also correlated. Even if
the peak density of uncertainty for misclassified pixels is higher compared with
the clutter. For both, clutter and misclassification masks, the maximum density
increases when using DeepLab. The KL divergences between the distributions
are given in Table 3. Although the density increases, the lower divergence indi-
cates a more similar distribution of clutter versus no-clutter and correctly versus
misclassified pixels for U-Net. Independent of the model, data related misclassi-
fications are often characterized by high uncertainty. However, the source of the
misclassification, i.e. wrong ground truth label, OOD sample, or anomaly, can
hardly be distinguished based on the distribution.

However, in the example in Figure 4a and 4c the highest uncertainties occur
in the predicted clutter area and the object borders. By the threshold values from
Table 3 and the labeling principle from Table 1 the uncertainty maps are evalu-
ated. Thus, Figure 4b and 4d visualizes the errors by using only the uncertainty
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(a) (b) (c) (d)

Fig. 4: The uncertainty values for U-Net (a) and DeepLab (c) are evaluated with
clutter mask (b) and (d), respectively. Type 1 (blue) and type 2 (yellow) errors
occur in both models. The green regions represent the area where clutter appears
together with high uncertainty.

Table 4: Proportion of errors represented as percentage of the uncertainty maps.
Differences to the sum of 100 is caused by rounding.
mask model background error type 1 error type 2 identified
misclassification U-Net 71 19 4 7
misclassification DeepLab 66 24 3 8
clutter U-Net 72 22 3 3
clutter DeepLab 66 28 2 3

values for the OOD identification. Applying the clutter mask, all other classes
are assigned to the background. Due to high uncertainty, areas with misleading
clutter regions (error type 1, blue) exist. In contrast, low uncertainties leads
to missing clutter identification (error type 2, yellow). The correctly identified
clutter regions (green) have higher completeness in DeepLab in this example.
However, with DeepLab, larger contiguous error type 1 regions form.

Evaluated quantitatively, 3 % of the clutter pixels cannot be identified via
their uncertainty with U-Net (error type 2 in Table 4). With DeepLab, the
proportion of error type 2 pixels decreases at the expense of the amount of error
type 1 and correct background class. In contrast to error type 2, error type 1 is
very high with a proportion of up to 28%. Thus, to reduce the type 1 error and
analyze the characteristics of the misclassified and clutter pixels in more detail,
the connected component analysis is used.

5.3 Connected Component Analysis

The results from the component-based classification in Table 5 show that U-
Net and DeepLab models correlate moderately with the reference masks in the
assessment of clutter pixels and quite low in the assessment of the incorrect pix-
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Table 5: Selection of results from the meta-classification. We specify the number
of trees in Random Forest classifier. By OA and κ, we denote Overall Accuracy
and Cohen’s kappa coefficient, respectively. All numbers are given in percent-
ages. For the results of all configurations, including import vector machines, see
Supplementary Material (Table S1).
mask model metric balancing factor 1 balancing 1.5 balancing 2.5

10 Trees 25 T 50 T 10 T 25 T 50 T 10 T 25 T 50 T
clutter DeepLab OA 66.4 66.1 66.1 73.6 74.3 74.8 81.8 83.1 83.8

κ 14.9 16.0 16.7 17.9 20.8 21.2 16.8 18.9 20.4
clutter U-Net OA 67.1 66.8 67.1 74.9 75.5 75.9 82.4 82.8 83.3

κ 18.5 20.6 21.2 19.7 22.0 22.8 22.1 23.2 23.8
misclassification DeepLab OA 59.3 60.5 62.0 65.5 66.3 67.6 67.8 69.5 70.0

κ 8.5 11.3 13.4 8.9 8.6 9.2 5.5 6.4 5.3
misclassification U-Net OA 62.7 63.9 64.5 68.1 69.9 70.5 69.2 70.5 71.1

κ 12.6 16.6 17.0 11.3 14.4 14.3 8.8 9.3 9.0

els. The results of U-Net are always slightly higher than that of DeepLab. One
problem of lower performance of DeepLab is related to the connected compo-
nents. Due to the larger size of the components, they include both clutter and
no-clutter pixels, which makes a clear assignment difficult.

In addition, we are dealing with extremely unbalanced data: the highest
overall accuracies can be achieved by simply assigning all connected components
to the “normal” class, which sets κ to zero. Not mentioned in Table 5 is the
dependency on the minimum leaf size parameter of RF. Smaller minimum leaf
size tends to overfit for the small number of trees while a larger value makes RF
more independent of the tree number.

The features used are strongly correlated, which not only exacerbates the
overfitting, but also makes it more difficult to assess their importance. Never-
theless, the feature importance values of RF in Figure 5 show more detailed
characteristics of the uncertain regions compared to deep learning results. The
variance inside each component is less important than the mean values. The top
three features using 50 Trees and the U-Net results are the mean blue, red and
near infrared compared to area, mean red and the first mean entropy feature us-
ing DeepLab. However, the importance values for all features except eccentricity
vary in a range of 0.9 to 2.0 and are thus similar in importance.

Our example (Figure 6) shows our final predicted clutter map, which contains
OOD samples and anomalies. Comparing this predicted map with the RGB
input and the corresponding ground truth, this map detected more anomalies
correctly as labeled in the ground truth as clutter, for example the distorted tree
pixels. However, with the used features the separation between OOD samples
and anomalies could not reached.

There are some errors of type 2 that we leave unchecked in this work, but
mostly they are close to the correctly identified components. Overall, DeepLab
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Fig. 5: Feature importance of the 18 different component-based features using
RF for U-Net (left) and DeepLab (right) for identification of clutter.

Fig. 6: The RGB, the ground truth, and the predicted clutter map are presented
from left to right. The clutter map contains the desired OOD samples as well as
anomalies. The green color represents the correctly identified components, the
blue components shows the errors of the RF classifier. The true negative and all
not used image parts are white background.

results tend to produce quite large components, which are not of much help while
the results of U-Net seem more concordant with the anomalous regions.

6 Conclusion and Future Work

We presented a contribution on detection and analysis of OOD samples. Two
goals pursued here were to establish a correlation between the uncertain and
OOD samples within a workflow for semantic segmentation as well as their iden-
tification using connected component analysis and shallow learning. The first
goal could be achieved with the applied deep learning models and the gener-
ated uncertainty maps. Significant values for KL divergence in the distributions
confirm the correlation between the classification uncertainty and OOD samples
and anomalies, represented by clutter pixels. For the second goal, we analyzed
the uncertain regions with methods of machine learning. We considered low-level
image-based features and Random Forest as conventional classifier. At the cur-
rent stage of our research, moderate correlations could be established since the
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values of Cohen’s kappa have not exceeded 0.25 for clutter pixels and 0.2 for
misclassifications.

To improve the detection in future work, the dependency on very big and in-
homogeneously filled with clutter or misclassified pixels should addressed. Thus,
applying clustering methods such as super-pixel could generate more categorical
components. Further, evaluation of multi-modal data is becoming increasingly
popular in remote sensing; thus extending the classifier with additional features
derived from 3D data may increase the accuracy. In this paper, we concentrated
on the type 1 errors. However, the type 2 errors, that is, possible misclassification
despite allegedly certain regions, are equally important and should be tackled in
the future. Finally, evaluation on further dataset would provide some clues on
the generalizability of the proposed methods.
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