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Abstract. Deep neural networks (DNNs) have made great strides in pushing the
state-of-the-art in several challenging domains. Recent studies reveal that they
are prone to making overconfident predictions. This greatly reduces the overall
trust in model predictions, especially in safety-critical applications. Early work
in improving model calibration employs post-processing techniques which rely
on limited parameters and require a hold-out set. Some recent train-time cali-
bration methods, which involve all model parameters, can outperform the post-
processing methods. To this end, we propose a new train-time calibration method,
which features a simple, plug-and-play auxiliary loss known as multi-class align-
ment of predictive mean confidence and predictive certainty (MACC). It is based
on the observation that a model miscalibration is directly related to its predictive
certainty, so a higher gap between the mean confidence and certainty amounts
to a poor calibration both for in-distribution and out-of-distribution predictions.
Armed with this insight, our proposed loss explicitly encourages a confident
(or underconfident) model to also provide a low (or high) spread in the pre-
softmax distribution. Extensive experiments on ten challenging datasets, covering
in-domain, out-domain, non-visual recognition and medical image classification
scenarios, show that our method achieves state-of-the-art calibration performance
for both in-domain and out-domain predictions. Our code and models will be pub-
licly released.

Keywords: Network Calibration · Model Calibration · Uncertainty.

1 Introduction

Deep neural networks (DNNs) have displayed remarkable performance across many
challenging computer vision problems e.g., image classification [7,13,23,45]. How-
ever, some recent works [12,35,40,48] have demonstrated that they tend to make over-
confident predictions, and so are poorly calibrated. Consequently, the predicted con-
fidences of classes are higher than the actual likelihood of their occurrences. A key
reason behind this DNN behaviour is the supervision from zero-entropy signal which
trains them to become over-confident. Poorly calibrated models not only create a gen-
eral suspicion in the model predictions, but more importantly, they can lead to dan-
gerous consequences in many safety-critical applications, including healthcare [8,44],
autonomous vehicles [11], and legal research [49]. In such applications, providing a
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Fig. 1: We propose a new train-time calibration based on a novel auxiliary loss formulation
(MACC). We compare between a model trained with NLL loss and ours (NLL+MACC). (a)
shows out-of-domain performance (PACS) while (b) displays in-domain performance (Tiny-
ImageNet and CIFAR10). NLL+MACC has higher confidence values for correct predictions (Gi-
raffe (PACS)/Backpack (Tiny-ImageNet)) and lower confidence values for incorrect predictions
(Dog (PACS)/Dog (CIFAR10)). (c) Reliability diagrams show that NLL+MACC improves bin-
wise miscalibration, thereby alleviating under/over-confident predictions.

correct confidence is as significant as providing a correct label. For instance, in auto-
mated healthcare, if the control is not shifted to a doctor when the confidence of the
incorrect prediction from a disease diagnosis network is high [20], it can potentially
lead to disastrous outcomes. We have seen some recent attempts towards improving the
network calibration. Among them, a simple technique is based on a post-hoc procedure,
which transforms the outputs of a trained network [12]. The parameters of this trans-
formation are typically learned on a hold-out validation set. Such post-hoc calibration
methods are simple and computationally efficient, however, they are architecture and
data-dependent [31]. Furthermore, in many real-world applications, the availability of
a hold-out set is not guaranteed. Another route to reducing miscalibration is train-time
calibration which tends to involve all model parameters. A dominant approach in train-
time calibration methods proposes auxiliary losses that can be added to the task-specific
loss (e.g., NLL) to reduce miscalibration [14,31,35,42]. These auxiliary losses aim at
either increasing the entropy of the predictive distribution [31,35,42] or aligning the
predictive confidence with the predictive accuracy [14,25].

We take the train-time route to calibration, and propose an auxiliary loss function:
Multi-class alignment of predictive mean confidence and predictive certainty (MACC).
It is founded on the observation that a model’s predictive certainty is correlated to its
calibration performance. So, a higher gap between the predictive mean confidence and
predictive certainty translates directly to a greater miscalibration both for in-distribution
and out-of-distribution predictions. If a model is confident then it should also produce
a relatively low spread in the logit distribution and vice versa. Proposed loss function is
differentiable, operates on minibatches and is formulated to be used with other task-
specific loss functions. Besides showing effectiveness for calibrating in-distribution
examples, it is also capable of improving calibration of out-of-distribution examples
(Fig. 1). Contributions: (1) We empirically observe a correlation between a model’s
predictive certainty and its calibration performance. (2) To this end, we propose a sim-
ple, plug-and-play auxiliary loss term (MACC) which attempts to align the predictive
mean confidence with the predictive certainty for all class labels. It can be used with
other task-specific loss functions, such as Cross Entropy (CE), Label Smoothing (LS)
[36] and Focal Loss (FL) [35]. (3) Besides the predicted class label, it also reduces the
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gap between the certainty and mean confidence for non-predicted class labels, thereby
improving the calibration of non-predicted class labels. (4) We carry out extensive ex-
periments on three in-domain scenarios, CIFAR-10/100[22], and Tiny-ImangeNet[4],
a class-imbalanced scenario SVHN [38], and four out-of-domain scenarios, CIFAR-
10/100-C (OOD) [17], Tiny-ImangeNet-C (OOD) [17] and PACS [28]. Results show
that our loss is consistently more effective than the existing state-of-the-art methods
in calibrating both in-domain and out-of-domain predictions. Moreover, we also show
the effectiveness of our approach on non-visual pattern recognition task of natural lan-
guage classification (20 Newsgroups dataset [27]) and a medical image classification
task (Mendeley dataset [21]). Finally, we also report results with a vision transformer-
based baseline (DeiT-Tiny [47]) to show the applicability of our method.

2 Related Work

Post-hoc calibration methods: A classic approach for improving model calibration,
known as post-hoc calibration, transforms the outputs of a trained model [6,12,46,50].
Among different post-hoc calibration methods, a simple technique is temperature scal-
ing (TS) [12], which is a variant of Platt scaling [12]. It scales the logits (i.e. pre-softmax
activations) by a single temperature parameter, which is learned on a hold-out validation
set. TS increases the entropy of the predictive distribution, which is beneficial towards
improving model calibration. However, it decreases the confidence of all predictions,
including the correct one. TS which relies on a single parameter for transformation can
be generalized to a matrix transform, where the matrix is also learnt using a hold-out
validation set. Dirichlet calibration (DC) employs Dirichlet distributions for scaling the
Beta-calibration [24] method to a multi-class setting. DC is incorporated as a layer in a
neural network on log-transformed class probabilities, which is learnt using a hold-out
validation set. Although TS improves model calibration for in-domain predictions, [40]
showed that it performs poorly for out-of-domain predictions. To circumvent this, [46]
proposed to perturb the validation set before performing the post-hoc calibration. Re-
cently, [33] proposed a ranking model to improve the post-hoc model calibration, and
[6] used a regressor to obtain the temperature parameter at the inference stage.
Train-time calibration methods: Brier score is considered as one of the earliest train-
time calibration technique for binary probabilistic forecast [3]. Later, [12] demonstrated
that the models trained with negative log-likelihood (NLL) tend to be over-confident,
and thus, there is a dissociation between NLL and calibration. Several works proposed
auxiliary losses that can be used with NLL to improve miscalibration. For instance, [42]
penalized the over-confident predictions by using entropy as a regularization term, and
[36] showed that label smoothing (LS) can improve model calibration. A similar in-
sight was reported by [35], that Focal loss (FL) implicitly improves model calibration.
It minimizes the KL divergence between the predictive distribution and the target distri-
bution, and at the same time increases the entropy of the predictive distribution. These
methods establish that implicit or explicit maximization of entropy improves calibration
performance. Based on this observation, [31] proposed a calibration technique based on
inequality constraints, which imposes a margin between logit distances. Recently, [29]
incorporated the difference between confidence and accuracy (DCA) as an auxiliary
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loss term with the the cross-entropy loss. Similarly, [25] developed an auxiliary loss
term (MMCE), for model calibration that is computed with a reproducing kernel in a
Hilbert space [10]. Prior methods, such as [25,29], only calibrate the maximum class
confidence. To this end, [14] proposed an auxiliary loss term, namely MDCA, that cal-
ibrates the non-maximum class confidences along with the maximum class confidence.
We also take the train-time calibration route, however, different to existing methods,
we propose to minimize the gap between the predictive mean confidence and predictive
certainty to improve model calibration.
Other calibration methods: Some methods learn to discard OOD samples, either at
train-time or post-hoc stage, which reduces over-confidence and leads to improved cal-
ibration. Hein et al. [15] demonstrated ReLU makes DNNs provide high confidence for
an input sample that lies far away from the training samples. Guo et al. [12] explored
the impact of width, and depth of a DNN, batch normalization, and weight decay on
model calibration. For more literature on calibrating a DNN through OOD detection,
we refer the reader to [5,18,34,41].
Calibration and uncertainty estimation in DNNs: Many probabilistic approaches
emerge from the Bayesian formalism [1], in which a prior distribution over the neu-
ral network (NN) parameters is assumed, and then a training data is used to obtain the
posterior distribution over the NN parameters, which is then used to estimate predictive
uncertainty. Since the exact Bayesian inference is computationally intractable, several
approximate inference techniques have been proposed, including variational inference
[2,32], and stochastic expectation propagation [19]. Ensemble learning is another ap-
proach for quantifying uncertainty that uses the empirical variance of the network pre-
dictions. We can create ensembles using different techniques. For instance, with the dif-
ferences in model hyperparameters [48], random initialization of weights and random
shuffling of training examples [26], dataset shift [40], and Monte Carlo (MC) dropout
[9,51]. In this work, we chose to use MC dropout [9] to estimate predictive mean con-
fidence and predictive uncertainty of a given example for all class labels. It provides a
distribution of class logit scores and is simple to implement. However, the conventional
implementation of MC dropout can incur high computational cost for large datasets,
architectures, and longer training schedules. To this end, we resort to an efficient imple-
mentation of MC dropout that greatly reduces this computational overhead.

3 Proposed Methodology

Preliminaries: We consider the task of classification where we have a dataset D =
⟨(xi, y

∗
i )⟩Ni=1 of N input examples sampled from a joint distribution D(X ,Y), where

X is an input space, and Y is the label space. xi ∈ X ∈ RH×W×C is an input image
with height H , width W , and number of channels C. Each image has a correspond-
ing ground truth class label y∗i ∈ Y = {1, 2, ...,K}. Let us denote a classification
model Fcls, that typically outputs a confidence vector si ∈ RK . Since each element of
vector si is a valid (categorical) probability, it is considered as the confidence score
of the corresponding class label. The predicted class label ŷi can be computed as:
ŷi = argmaxy∈Y si[y]. Likewise, the confidence score of the predicted class ŷi is
obtained as: ŝi = maxy∈Ysi[y].
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3.1 Definition and Quantification of Calibration

Definition: We can define a perfect calibration if the (classification) accuracy for a
given confidence score is aligned with this confidence score for all possible confidence
scores [12]: P(ŷ = y∗|ŝ = s) = s ∀s ∈ [0, 1], where P(ŷ = y∗|ŝ = s) is the ac-
curacy for a given confidence score ŝ. The expression only captures the calibration of
the predicted label i.e. associated with the maximum class confidence score ŝ. The con-
fidence score of non-predicted classes, also called as non-maximum class confidence
scores, can also be calibrated. It provides us with a more general definition of perfect
calibration and can be expressed as: P(y = y∗|s[y] = s) = s ∀s ∈ [0, 1].
Expected calibration error (ECE): ECE is computed by first obtaining the absolute
difference between the average confidence of the predicted class and the average ac-
curacy of samples, that are predicted with a particular confidence score. This absolute
difference is then converted into a weighted average by scaling it with the relative fre-
quency of samples with a particular confidence score. The above two steps are repeated
for all confidence scores and then the resulting weighted averages are summed [37]:

ECE =
∑M

i=1
|Bi|
N

∣∣∣∣ 1
|Bi|

∑
j:ŝj∈Bi

I(ŷj = y∗j ) − 1
|Bi|

∑
j:ŝj∈Bi

ŝj

∣∣∣∣. Where N is the

total number of examples. Since the confidence values have a continuous interval, the
confidence range [0, 1] is divided into M bins. |Bi| is the number of examples falling in
ith confidence bin. 1

|Bi|
∑

j:ŝj∈Bi
I(ŷj = y∗j ) denotes the average accuracy of examples

lying in ith bin, and 1
|Bi|

∑
j:ŝj∈Bi

ŝj represents the average confidence of examples
belonging to ith confidence bin. The ECE metric for measuring DNN miscalibration
has two limitations. First, the whole confidence vector is not accounted for calibration.
Second, due to binning of the confidence interval, the metric is not differentiable. See
description on Maximum calibration error (MCE) in supplementary material.
Static calibration error (SCE): SCE extends ECE by taking into account the whole
confidence vector, thereby measuring the calibration performance of non-maximum

class confidences [39], SCE = 1
K

∑M
i=1

∑K
j=1

|Bi,j |
N

∣∣∣∣Ai,j − Ci,j

∣∣∣∣. Where K repre-

sents the number of classes and |Bi,j | is the number of examples from the jth class
and the ith bin. Ai,j = 1

|Bi,j |
∑

k:sk[j]∈Bi,j
I(j = yk) denotes the average accuracy

and Ci,j =
1

|Bi,j |
∑

k:sk[j]∈Bi,j
sk[j] represents the average confidence of the examples

belonging to the jth class and the ith bin. Similar to ECE metric, SCE metric is not
differentiable, and so it cannot be used as a loss in gradient-based learning methods.

3.2 Proposed Auxiliary Loss: MACC

Our auxiliary loss (MACC) aims at reducing the deviation between the predictive mean
confidence and the predictive certainty for predicted and non-predicted class labels.
Quantifying mean confidence and certainty: Our proposed loss function requires the
estimation of class-wise mean confidence and certainty. We choose to use the MC
dropout method [9] to estimate both of these quantities because it provides a distri-
bution of (logit) scores for all possible classes and only requires the addition of a single
dropout layer (M), which in our case, is added between the feature extractor f (·) that
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generates features and the classifier g(·) that projects the extracted features into class-
wise logits vector. The conventional implementation of MC dropout technique requires

Fig. 2: Left: We investigate if there is a relationship between static calibration error and indi-
vidual (output) predictive uncertainties. We observe (negative) correlation between a model’s
predictive certainty and its calibration error (SCE) i.e. as the certainty increases, the calibration
error goes down (CIFAR10 trained on ResNet56 model with dropout). Middle & right: Based
on this observation, we propose to align predictive mean confidence with the predictive certainty
(NLL/FL+MACC), which allow a rapid reduction in the calibration error in comparison to base-
line (NLL). See supplementary material for details of the plot.

N MC forward passes for an input example xi through the model Fcls. From the re-
sulting logits distribution, we can then estimate the mean and variance for each class
j, which reflects for xi, its predictive mean logit score z̄i[j] and the predictive uncer-
tainty in logit scores ui[j], respectively, where z̄i,ui ∈ RK . To obtain predictive mean
confidence s̄i[j], we apply softmax to z̄i[j]∀j. The certainty ci[j] is obtained from the
uncertainty ui[j] as: ci[j] = 1− tanh(ui[j]). The tanh is used to scale the uncertainty
values between 0 and 1.

We resort to an efficient implementation of MC dropout technique aimed at re-
ducing its computational overhead, which is of concern during model training. Specif-
ically, we feed an input example xi to the feature extractor network only once and
obtain the extracted features fi. These extracted features are then fed to the combina-
tion of dropout layer and classifier (g ◦ M(fi)) for N number of MC forward passes.
Specifically, ui[j] =

1
N−1

∑M
m=1([g ◦Mm(fi)]j − z̄i[j])

2, where z̄i[j] represents the

mean of the logit distribution given by: z̄i[j] = 1
N

∑M
m=1[g ◦Mm(fi)]j . This so-called

architecture-implicit implementation of MC dropout enjoys the benefit of performing
only a single forward pass through the feature extractor f as opposed to N forward
passes in the conventional implementation. We empirically observe that, for 10 MC for-
ward passes, the efficient implementation reduces the overall training time by 7 times
compared to the conventional implementation (see suppl.). Deep ensembles [26] is an
alternate to MCDO, however, it is computationally expensive to be used in a train-time
calibration approach. On CIFAR10, training deep ensembles with 10 models require
around 7.5 hours whereas ours with 10 forward passes, only require around an hour.
MACC: The calibration is a frequentist notion of uncertainty and could be construed
as a measure reflecting a network’s overall predictive uncertainty [26]. So, we inves-
tigate if there is a relationship between static calibration error and individual (output)
predictive uncertainties. We identify a (negative) correlation between a model’s predic-
tive certainty and its calibration error (SCE). In other words, as the certainty increases,
the calibration error goes down (Fig. 2). With this observation, we propose to align the
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predictive mean confidence of the model with its predictive certainty. Our loss function
is defined as:

LMACC =
1

K

K∑
j=1

∣∣∣∣∣ 1M
M∑
i=1

s̄i[j]−
1

M

M∑
i=1

ci[j]

∣∣∣∣∣ , (1)

where s̄i[j] denotes the predictive mean confidence of the ith example in the mini-
batch belonging to the jth class. Likewise, ci[j] represents the certainty of the ith ex-
ample in the mini-batch belonging to the jth class. M is the number of examples in the
mini-batch, and K is the number of classes.
Discussion: Given an example, for which a model predicts high mean confidence, our
loss formulation forces the model to also produce relatively low spread in logits dis-
tribution and vice versa. This alignment directly helps towards improving the model
calibration. Fig. 2 shows that, compared to baseline, a model trained with our loss al-
lows a rapid decrease in calibration error. Moreover, Fig. 3a, 3b show that when there
are relatively greater number of examples with a higher gap between (mean) confidence
and certainty (i.e. the distribution is more skewed towards right), a model’s calibration
is poor compared to when there are relatively smaller number of examples with a higher
gap (Fig. 3c, 3d). The proposed auxiliary loss is a simple, plug-and-play term. It is dif-
ferentiable and operates over minibatch and thus, it can be used with other task-specific
loss functions to improve the model calibration, Ltotal = Ltask + β.LMACC, where β
represents the weight with which our LMACC is added to the task-specific loss function
Ltask e.g., CE, LS [36] and FL [35].

(a) (b) (c) (d)
Fig. 3: Empirical distribution of difference between predictive certainty and the predictive mean
confidence of all the classes for in-domain examples (CIFAR10), and out-of-domain (OOD) ex-
amples (CIFAR10-C). (Left - (a),(b)) When there are relatively greater number of examples with
higher gap between the mean confidence and certainty, calibration errors (ECE and SCE) are
higher, compared to when there are relatively smaller number of examples (Right - (c),(d)). For
(a) and (b), a ResNet56 model with dropout is trained with NLL. For (c) and (d), the same model
is trained with NLL+MACC (ours).

4 Experiments

Datasets: To validate in-domain calibration performance, we use four challenging
image classification datasets: CIFAR10[22], CIFAR100[22], Tiny-ImageNet[4] and
Mendeley V2[21] and a natural language processing dataset: 20 Newsgroups[27]. Tiny-
Image -Net is a subset of ImageNet[43] comprising 200 classes. Further, to report cal-
ibration performance in out-of-domain scenarios, we show results on four challenging
benchmarks: CIFAR10-C[16], CIFAR100-C[16], Tiny-ImageNet-C[16] and PACS[28].
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For CIFAR10-C, CIFAR100-C and Tiny-ImageNet-C, we use their corresponding in-
domain benchmarks for training and validation. Finally, to evaluate calibration perfor-
mance under class imbalance, we report results on SVHN[38].
Implementation details and evaluation metrics: We use ResNet[13] and DeiT-
Tiny[47] (only for CIFAR10) as the backbone networks in our experiments. For our
method, we insert a single dropout layer in between the penultimate feature layer and
the final classifier of the ResNet architecture. We also input the predictive mean confi-
dence, obtained for our MACC, to the task-specific loss.We set the number of MC sam-
ples to 10 in all experiments. The dropout ratio is sought in the range p ∈ {0.2, 0.3, 0.5}
using the validation set. See suppl. material for details. We report the calibration per-
formance with ECE[37] and SCE[39] metrics and the classification performance with
top-1 accuracy. The number of bins is M = 15 for both the calibration metrics across
all the experiments. Moreover, we plot reliability diagrams and report AUROC scores.
Baselines: We evaluate MACC against models trained with CE, LS[36], FL[30], adap-
tive sample-dependent focal loss (FLSD)[35], brier score (BS)[3] and MMCE[25]. We
also compare against the recent auxiliary loss functions: MbLS[31] and MDCA[14].
Hyper-parameters of the compared methods are set based on the values reported in the
literature. For both MDCA and our loss (MACC), the relative weight is chosen from
β ∈ {1, 5, 10, 15, 20, 25} and the most accurate model on the validation set is used to
report the calibration performance, following MDCA[14] implementation. Meanwhile,
the scheduled γ in FLSD is set to 5 for sk ∈ [0, 0.2) and 3 for sk ∈ [0.2, 1), where sk
is the confidence score of the correct class. Refer to the supplementary for the detailed
description of these hyperparameters.
Experiments with task-specific loss functions: Our loss (MACC) is developed to be
used with a task-specific loss function. We consider CE (NLL), LS and FL as the task-
specific losses and report the calibration performance with and without incorporating
our MACC. For LS we use α ∈ {0.05, 0.1} and for FL we use γ ∈ {1, 2, 3} and the
most accurate model on the validation set is used to report the performance. Table 1
shows that our auxiliary loss function (MACC) consistently improves the calibration
performance of all tasks-specific losses across six datasets. We also note that FL is a
much stronger task-specific loss function in calibration performance in all datasets, ex-
cept SVHN and 20 Newsgroups. The CE loss performs relatively better than FL loss
on SVHN and LS performs better on 20 Newsgroups. We choose to report performance
with FL+MACC on all datasets, except SVHN (for which we use CE loss), in all sub-
sequent experiments.
Comparison with state-of-the-art (SOTA): We compare the calibration performance
against recent SOTA train-time calibration methods (Table 2, Table 3). We use NLL+
MbLS to report the performance as it provides better results than FL+MbLS (see
suppl.). Our method achieves lower calibration errors in ECE, SCE and AUROC met-
rics across six datasets. To demonstrate the effectiveness of MACC on natural lan-
guage classification, we conduct experiments on the 20 Newsgroups dataset (Table 2).
Our FL+MACC outperforms others in both SCE and ECE metrics. Experiments with
vision-transformer based backbone architecture, namely DeiT-Tiny [47] show that our
FL+MACC is capable of improving the calibration performance of DeiT. Note that,
DeIT is a relatively stronger baseline in calibration performance compared to ResNet
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(see Table 2). For training DeiT models, we use the hyperparameters specified by the
authors of DeiT.

Table 1: Calibration performance in SCE (10−3) and ECE (%) metrics of our auxiliary loss
(MACC) when added to three task-specific losses: CE, LS, and FL. Throughout, the best results
are in bold, and the second best are underlined.

Dataset Model NLL NLL+MACC LS[36] LS+MACC FL[30] FL+MACC
SCE ECE SCE ECE SCE ECE SCE ECE SCE ECE SCE ECE

CIFAR10 ResNet56 6.50 2.92 6.18 2.81 5.90 1.85 5.51 1.57 3.79 0.64 3.04 0.59

CIFAR100 ResNet56 2.01 3.35 1.99 2.74 2.08 0.86 2.07 0.92 1.99 0.89 1.97 0.64

Tiny-ImageNet ResNet50 2.06 13.55 1.72 9.50 1.50 2.04 1.37 1.37 1.50 3.52 1.44 1.33

SVHN ResNet56 1.70 0.43 1.50 0.27 11.70 4.95 7.72 3.10 7.79 3.55 1.70 0.49

20 Newsgroups GP CNN 23.05 21.11 20.30 18.32 10.35 5.80 9.61 2.17 21.30 19.54 13.84 11.28

Mendeley ResNet50 206.98 16.05 77.12 7.59 133.25 5.32 57.70 4.52 160.58 5.13 66.97 4.14

Temperature Scaling (TS): MACC outperforms NLL/FL + TS (Table 3). We report
the best calibration obtained for TS with the primary losses of NLL and FL. For TS we
follow the same protocol used by the MDCA [14] where 10% of the training data is set
aside as the hold-out validation set and a grid search between the range of 0 to 10 with
a step-size of 0.1 is performed to find the optimal temperature value that gives the least
NLL on the hold-out set. In CIFAR10/100 and SVHN, the obtained metric scores are
similar to that of MDCA [14]. For Tiny-ImageNet, MDCA [14] does not report results,
and our results are better than MbLS [31], which uses the same protocol as ours.
Class-wise calibration performance and test accuracy: Table 4 reports class-wise
ECE (%) scores of competing calibration approaches, including MDCA and MbLS, on
SVHN and CIFAR10 datasets, with ResNet56. In SVHN, NLL+MACC (ours) achieves
the lowest ECE(%) in three classes while demonstrating the second best score in other
four. FL+ MACC provides the best values in two classes and the second best values
in another two classes. NLL+MbLS also performs well, being the best in five classes.
In CIFAR10, FL+MACC (ours) provides the best ECE(%) scores in five classes while
showing the second best in all others. Table 2 shows the discriminative performance
(top-1 accuracy %) of our loss (MACC) along with the other competing approaches.
Our loss shows superior accuracy than most of the existing losses, including MDCA,
in CIFAR100 and Tiny-ImageNet. Moreover, it provides the best accuracy in SVHN,
Mendeley and 20 Newsgroups.
Out-of-distribution performance: Table 5 reports the out-of-domain calibration per-
formance on the CIFAR10-C, CIFAR100-C and Tiny-ImageNet-C benchmarks. In both
CIFAR10-C and CIFAR100-C datasets, our loss records the best calibration perfor-
mance in ECE and SCE metrics. In Tiny-ImageNet-C, our loss shows the lowest ECE
score and reveal the second lowest SCE score. We plot calibration performance as a
function of corruption level in CIFAR10-C dataset (see Fig. 4 suppl.). Our loss consis-
tently obtains lowest ECE and SCE across all corruption levels. For the OOD evalua-
tion, including CIFAR10-C, CIFAR100- C, and Tiny-ImageNet-C, we follow the same
protocol and train/val splits as used for in-domain evaluation. Specifically, we train a
model using the training split, and optimize parameters using the validation split and
the trained model is then evaluated on the in-domain test set or the corrupted test set.
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Table 2: Comparison of calibration performance in SCE (10−3) and ECE (%) metrics with the
SOTA train-time calibration methods.

Dataset Model BS[3] MMCE[25] FLSD[35] FL+MDCA[14] NLL+MbLS[31] FL/NLL+MACC

SCE ECE Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE Acc.

CIFAR10 ResNet56 4.78 1.67 92.46 5.87 1.74 91.75 7.87 3.17 92.37 3.44 0.79 92.92 4.63 1.48 93.41 3.04 0.59 92.86
DeiT-Tiny − − − − − − − − − 3.63 1.52 97.11 3.01 0.56 96.78 3.02 0.48 96.43

CIFAR100 ResNet56 2.08 4.75 69.64 1.98 2.76 69.71 2.05 1.76 70.97 1.92 0.68 70.34 1.99 0.96 71.33 1.97 0.64 70.50

Tiny-ImageNet ResNet50 − − − − − − 1.50 2.75 60.39 1.44 2.07 60.24 1.42 1.59 62.69 1.44 1.33 61.60

SVHN ResNet56 2.41 0.51 96.57 12.34 5.88 95.51 17.49 8.59 95.87 1.77 0.32 96.10 1.43 0.37 96.59 1.50 0.27 96.74

20 Newsgroups GP CNN 21.44 18.64 66.08 17.32 14.76 67.54 14.78 11.62 66.81 17.40 15.47 67.04 17.59 15.55 67.74 13.84 11.28 67.87

Mendeley ResNet50 224.34 15.73 76.28 199.16 10.98 78.69 146.19 4.16 79.17 177.72 7.85 78.69 176.93 9.70 78.85 66.97 4.14 80.93

Table 3: Calibration performance with Temperature Scaling (TS) & comparison of calibration
performance in AUROC metric with SOTA train-time calibration methods.

Dataset
Comparison with TS SOTA Comparison

NLL+MACC NLL+TS FL+MACC FL+TS MDCA MbLS MACC

SCE ECE SCE ECE T SCE ECE SCE ECE T AUROC Score

CIFAR10 6.18 2.81 4.12 0.87 1.4 3.04 0.59 3.79 0.64 1.0 0.9966 0.9958 0.9966
CIFAR100 1.99 2.74 1.84 1.36 1.1 1.97 0.64 1.99 0.89 1.0 0.9922 0.9916 0.9922
Tiny-ImageNet 1.72 9.50 2.06 13.55 1.0 1.44 1.33 2.42 18.05 0.6 0.9848 0.9811 0.9858
SVHN 1.50 0.27 2.80 1.01 1.2 1.70 49 3.00 0.91 0.8 0.9973 0.9977 0.9977

Table 4: Class-wise calibration performance in ECE(%) of competing approaches on SVHN and
CIFAR10 benchmarks (ResNet56).

Loss Classes
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

SVHN CIFAR10
NLL+MDCA 0.17 0.20 0.34 0.22 0.13 0.16 0.15 0.17 0.16 0.14
NLL+MACC 0.12 0.16 0.14 0.20 0.14 0.14 0.10 0.16 0.19 0.14
FL+MDCA 0.13 0.22 0.21 0.20 0.16 0.18 0.16 0.14 0.16 0.22 0.33 0.32 0.42 0.72 0.21 0.39 0.30 0.21 0.21 0.33
NLL+MbLS 0.07 0.14 0.18 0.22 0.11 0.17 0.13 0.09 0.18 0.13 0.24 0.51 0.33 0.68 0.44 0.51 0.48 0.57 0.46 0.41
FL+MACC 0.17 0.23 0.18 0.18 0.17 0.19 0.17 0.14 0.10 0.17 0.33 0.34 0.31 0.45 0.30 0.33 0.25 0.28 0.23 0.23

Table 5: Out of Domain (OOD) calibration performance of competing approaches across
CIFAR10-C, CIFAR100-C and Tiny-ImageNet-C.

Dataset Model FL+MDCA NLL+MbLS FL+MACC
SCE (10−3) ECE (%) Acc. (%) SCE (10−3) ECE (%) Acc. (%) SCE (10−3) ECE (%) Acc. (%)

CIFAR10 (In-Domain)
ResNet56

3.44 0.79 92.92 4.63 1.48 93.41 3.04 0.59 92.86
CIFAR10-C (OOD) 29.01 11.51 71.30 27.61 12.21 73.75 23.71 9.10 72.85
CIFAR100 (In-Domain)

ResNet56
1.92 0.68 70.34 1.99 0.96 71.33 1.97 0.64 70.5

CIFAR100-C (OOD) 4.09 12.21 44.74 4.03 12.48 45.60 4.01 12.11 44.90
Tiny-ImageNet (In-Domain)

ResNet50
1.44 2.07 60.24 1.42 1.59 62.69 1.44 1.33 61.60

Tiny-ImageNet-C (OOD) 3.87 22.79 20.74 3.04 18.17 23.70 3.46 17.82 21.29

We also show the OOD calibration performance on the PACS dataset under two dif-
ferent evaluation protocols. In first, following [14], a model is trained on Photo domain
while Art domain is used as the validation set, and the trained model is then tested
on the rest of domains. Table 6 shows that the proposed loss obtains the best calibra-
tion performance in ECE score, while the second best in SCE. In second, a model is
trained on each domain and then tested on all other domains. In this protocol, 20% of
images corresponding to the training domain is randomly sampled as the validation set,
and the remaining 3 domains form the test set. Table 7 shows that FL+MACC provides
improved calibration than all other competing approaches.
Mitigating Under/Over-Confidence: We plot reliability diagrams to reveal the effec-
tiveness of our method in mitigating under/over-confidence (Fig. 1c & 4 (top)). Fur-
thermore, we plot confidence histograms to illustrate the deviation between the overall
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Table 6: OOD calibration performance (SCE (10−2) & ECE (%)) on PACS when ResNet18
model is trained on Photo, validated on Art, and tested on Sketch and Cartoon [14].

Domain FL+MDCA NLL+MbLS FL+MACC
Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE

Cartoon 25.34 15.62 44.05 27.69 12.82 30.88 32.17 10.19 22.18
Sketch 29.14 14.82 40.16 26.57 11.40 18.03 24.94 12.59 28.14
Average 27.24 15.22 42.10 27.13 12.11 24.45 28.55 11.39 25.16

Table 7: Out of Domain (OOD) calibration performance (SCE (10−2) & ECE (%)) on PACS
when ResNet18 model is trained on each domain and tested on other 3 domains. Validation set
comprises 20% randomly sampled images from the training domain.

FL+MDCA NLL+MbLS FL+MACC FL+MDCA NLL+MbLS FL+MACC
Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE Acc. SCE ECE

Photo Domain Art Domain
38.48 13.59 38.93 35.32 13.44 33.77 34.75 9.09 14.63 56.87 9.33 24.81 57.46 8.06 15.21 51.45 9.70 16.28

Cartoon Domain Sketch Domain
62.68 5.79 13.91 59.43 6.38 9.62 57.47 6.58 5.95 18.31 17.99 54.37 11.57 19.50 57.17 13.24 16.68 45.23

Average
44.09 11.68 33.00 40.94 11.83 28.94 39.23 10.51 20.52

confidence (dotted line) and accuracy (solid line) of the predictions (Fig. 4 (bottom)).
Fig. 4a & 4b show that our method can effectively mitigate the under-confidence of
a model trained with LS loss. Fig. 4e & 4f illustrate that our method notably reduces
the gap between the overall confidence and accuracy, thereby mitigating the under-
confident behaviour. Likewise, Fig. 4c, 4d, 4g & 4h display the capability of our method
in mitigating the over-confidence of an uncalibrated model.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4: Reliability diagrams (a,b,c,d) and confidence histograms (e,f,g,h) of (ResNet) models
trained with LS and LS+MACC. (a,b,e,f) show that our method is effective in reducing under-
confidence, while (c,d,g,h) reveal that it can reduce over-confidence. We refer to the supplemen-
tary for similar plots with NLL and FL.

Confidence of incorrect predictions: Fig. 5 shows the histogram of confidence values
for the incorrect predictions. After adding our auxiliary loss (MACC) to CE loss, the
confidence values of the incorrect predictions are decreased (see also Fig. 1a & 1b).
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(a) (b) (c) (d)
Fig. 5: Confidence histogram of incorrect predictions from CIFAR10 and SVHN (ResNet56).

Calibration performance under class imbalance: We use SVHN to validate the cal-
ibration performance under class imbalance, which has a class imbalance factor of 2.7
[14]. Both Tables 2 and 4 show that, compared to competing approaches, MACC not
only improves calibration performance over the (whole) dataset, but also displays com-
petitive calibration performance in each class. This is largely because MACC considers
whole confidence/certainty vector, which calibrates even the non-predicted classes.
Comparison of ECE and SCE Convergence with SOTA: Fig. 6 shows that the pro-
posed loss function MACC is optimizing both ECE and SCE, better than the current
SOTA methods of MbLS and MDCA. Although MACC does not explicitly optimize
ECE and SCE, it achieves better ECE and SCE convergence. Moreover, compared to
others, it consistently decreases both SCE and ECE throughout the evolution of training.

(a) (b)
Fig. 6: ECE and SCE convergence plot while training ResNet50 on the Tiny-ImageNet for
MDCA, MbLS and ours (MACC). We use the learning rate decay factor of 0.1 and 0.02 at epochs
50 and 70, respectively, while for MDCA and MbLS the factor is 0.1.

Impact of our model and training settings: Table 8 shows the performance of the
task-specific loss functions and the SOTA calibration losses with the same architecture
and training settings as in our loss. i.e., ResNet model with dropout is used and the
learning rate at the last stage of the learning rate scheduler is reduced. Upon comparing
Table 8 with Table 1 and Table 2, we note that with our model architecture and learning
rate setting, as such, the calibration of competing losses is poor than our loss. So, the
effectiveness of our method is not due to the model architecture or some specific training
settings but because of our loss formulation.

Table 8: Calibration performance of different losses with our model (ResNet model as in Table 2
with dropout) and training settings.

Dataset CE FL NLL+MbLS FL+MDCA
SCE ECE SCE ECE SCE ECE SCE ECE

CIFAR10 6.43 2.80 3.59 0.59 4.62 1.35 3.12 0.86

CIFAR100 2.01 4.00 1.87 0.79 2.12 0.85 2.00 1.04

SVHN 1.99 0.27 7.30 3.30 1.92 0.34 1.86 0.38
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5 Conclusion

We propose a new train-time calibration method which is based on a novel auxiliary
loss term (MACC). Our loss attempts to align the predictive mean confidence with the
predictive certainty and is based on the observation that a greater gap between the two
translates to higher miscalibration. It is differentiable, operates on minibatches, and acts
as a regularizer with other task-specific losses. Extensive experiments on ten challeng-
ing datasets show that our loss consistently shows improved calibration performance
over the SOTA calibration methods across in-domain and out-of-domain scenarios.
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