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Abstract. Uncovering novel drug candidates for treating complex dis-
eases remain one of the most challenging tasks in early discovery research.
To tackle this challenge, biopharma research established a standardized
high content imaging protocol that tags di�erent cellular compartments
per image channel. In order to judge the experimental outcome, the sci-
entist requires knowledge about the channel importance with respect to
a certain phenotype for decoding the underlying biology. In contrast to
traditional image analysis approaches, such experiments are nowadays
preferably analyzed by deep learning based approaches which, however,
lack crucial information about the channel importance. To overcome this
limitation, we present a novel approach which utilizes multi-spectral in-
formation of high content images to interpret a certain aspect of cellu-
lar biology. To this end, we base our method on image blending con-
cepts with alpha compositing for an arbitrary number of channels. More
speci�cally, we introduce DCMIX, a lightweight, scaleable and end-to-
end trainable mixing layer which enables interpretable predictions in
high content imaging while retaining the bene�ts of deep learning based
methods. We employ an extensive set of experiments on both MNIST
and RXRX1 datasets, demonstrating that DCMIX learns the biologically
relevant channel importance without scarifying prediction performance.

Keywords: Biomedical Imaging · Interpretable Machine Learning · Ex-
plainable AI · Image Channel Importance.

1 Introduction

High-Content Imaging (HCI) has developed to one of the main driving factors in
biopharma early discovery research to reveal novel drug candidates for sophisti-
cated treatment strategies such as cancer immunotherapies [21]. HCI is based on
a standardized experimental protocol that allow for the systematic acquisition of
multi-spectral images, e.g., in form of a cell painting assay protocol that requires
a high number of channels with the bene�t of a highly generalizable assay [3].
Here, high-content images are recorded by automated instruments on microtiter
plates which allow for large-scale drug candidate testing and an automatic anal-
ysis procedure to assess the mechanics of a drug candidate for a certain disease.
When running such HCI experiments, scientists prepare typically a set of 4 to 15
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channels [23,31] with a speci�c �uorophore that tags a certain cellular protein
or compartment. Subsequently, the scientist aims to analyze the experimental
outcome with respect to the importance of the �uorescence channels to validate
the �ndings or re�ne the experiment and, therefore, requires a fast and easy-to-
use analysis work�ow. This is particularly important as the speci�c functional
or mechanistic knowledge is encoded via the speci�c staining per image channel
[3] and hence required for decoding the underlying biology.

However, to analyze such complex multi-channel cell-painting assays, the sci-
entist requires the ability of sophisticated image analysis to distill the informa-
tion from the multi-spectral information. In biopharma research, the traditional
analysis [5] is gradually replaced by deep learning based approaches [40,14,48,39].
Despite the superior performance of such models in comparison to conventional
segmentation based analysis [5], the scientist lacks informative insights in terms
of understanding about which �uorescence channel in�uenced the decision [7].

In the past, various approaches have been proposed to extract the most rel-
evant information from high-dimensional datasets. The most basic approach to
determine the most relevant channels is a preprocessing step by applying an un-
supervised dimensionality reduction method such as Principal Component Anal-
ysis (PCA) [17]. However, employing such a preprocessing step does not guaran-
tee for phenotype-speci�c channels as the method only optimizes for the direc-
tions with the highest variance and not necessarily for the highest phenotypic
information. More recently, attention-based approaches have been introduced for
image channel selection [4,15,24,32] which su�er from high computational costs
and poor scalability. In addition, there are model-agnostic approaches such as
Shapely values [36,19] which, however, can su�er from sampling variability [27]
and be time consuming in terms of highly complex models [6].

To overcome the aforementioned limitations, we present a simple yet e�ective
method to estimate channel importance for HCI images. More speci�cally, we
introduce a lightweight, easy to use mixing layer that is composed of a general-
ized image blending mechanism with alpha compositing [50,1] which converts a
d-dimensional channel image into a 2D image retaining all phenotype relevant
information. This allows not only to incorporate an arbitrary number of chan-
nels in a highly scalable fashion but also leads to a reduced network size with
faster inference times while being able to facilitate the use of transfer learning
of pretrained networks. To summarize, we make the following contributions:

� We extend the imaging blending concepts of [50,1] and apply these to images
with an arbitrary number of channels.

� We encapsulate the generalized image blending into a lightweight, scalable
and end-to-end trainable mixing layer, called DCMIX, to estimate channel
importance for multi-spectral HCI data.

� Experiments on MNIST as well as on the challenging multi-channel real-
world imaging data set RXRX1 [42] with 31 di�erent cell phenotype classes
demonstrate that the proposed method learns the correct channel impor-
tance without sacri�cing its model performance.
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2 Related Work

In this section, we review related work on interpretable and explainable machine
learning [30]. Broadly spoken, we can distinguish between interpretable models
that are interpretable by design and explainable models that try to explain
existing models post-hoc [30].

Interpretable Machine Learning Methods can be separated into the fol-
lowing model classes: score-based [44], rule-based [9], sparse [43] and neural net-
works [12], among others [30]. In this review, we focus more closely on sparsity
inducing and attention-based interpretable methods. Sparsity-based approaches
introduce a sparsity constraint on the model coe�cients to determine the feature
importance. One of the most basic approaches is the least absolute shrinkage and
selection operator (LASSO) introduced by [43] which is employing the L1-norm
to ensure feature sparsity. This approach has subsequently been extended to
various lines of research, including dealing with grouped features [49,33], esti-
mating network graphs [13,34] or learning sparse representations in neural net-
works [26,47]. Most closely related to our work is LassoNet [22] which employs
a group lasso constraint based on the feature channels that are obtained from a
pretrained feature extraction network. In contrast, our approach is end-to-end
trainable and hence does not require a two step approach of feature extrac-
tion and importance estimation. More recently, attention-based approaches [45]
have emerged in the context of interpretable machine learning. [8] introduced
an attention-based model for the analysis of electronic health records and [37]
learns important features with an attentive mixture of experts approach. More-
over, attention is used in the context of hyper spherical band/channel selection
[4,15,24,32]. In contrast, our approach works on image blending and alpha com-
positing and hence reducing high computational costs.

Explainable Machine Learning Methods denote approaches that aim to ex-
plain decisions of an already trained machine learning model post-hoc by learning
a surrogate model [30]. In summary, we distinguish between attribution methods
that try to quantify the attribution of a feature to the prediction [41], concept-
based explanations trying to explain predictions with high-level concepts [20],
symbolic metamodels employing symbolic regression as a surrogate [2] and coun-
terfactual explanations [46]. In the context of our work, we focus on attribution
models. [35] learns a surrogate classi�er to explain an arbitrary black-box model
based on submodular optimization. [38] introduced DeepLIFT to decompose the
input contributions on the model prediction. In addition, Shapley values gained
a wide adoption in the machine learning domain mainly for feature selection
and model explain ability [36,19]. As a result, Lundberg & Lee [28] introduced
Shapely additive explanations (SHAP) to explain model predictions based on
Shapely regression values. Finally, Shapley values have been used in the con-
text of HCI channel importance estimation [42]. More speci�cally, the authors
adopt Shapely values to explain the channel importance of HCI images from a
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pretrained black-box model. Opposed to our approach, this method requires the
training of two separate models and hence does not allow for end-to-end training.

Fig. 1. Blue arrows denote steps and gray boxes actions in our work�ow, respectively.
In the �rst step (1.), we take a multi-channel cellular image and split it into single
channels. Subsequently, we mix the channel within our DCMIX layer to obtain the
most important part of each channel. In the second step (2.), we take the blended
image into our classi�cation network.

3 Model

As illustrated in Figure 1, we utilize a two step approach for estimating channel
importance in multi-spectral bioimage classi�cation settings by introducing a
lightweight, easy to use and end-to-end trainable mixing layer. To do so, we
propose a blending layer which combines the most important parts of the distinct
channels into a new 2D image. After, we perform a classi�cation based on the
blended image.

3.1 Conception of the Image Blending Layer

We start with an input image I ∈ Rh×w×c where h denotes the height, w the
width and c the number of channels in the multi-spectral image. Subsequently,
the image I is split into its distinct channels and processed in the DCMIX layer.
The DCMIX layer is inspired by simple image blending and alpha compositing
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[50,1]. More speci�cally, the idea behind Alpha blending is to combine two images
as follows:

C = α1 ·A1 + (1− α1) ·A2, (1)

where A1 ∈ Rh×w×c and A2 ∈ Rh×w×c are the corresponding image matrices to
blend and C ∈ Rh×w×c the blended image matrix. The trainable parameter α1

determines the transparency of each channel.
In this work, we take advantage of the ideas proposed in [50,1] and generalize

the idea by employing the trainable alpha values as weights for each channel that
has to be blended with:

C =

n∑
i

αi ·Ai where: αi ≥ 0, (2)

where αi is multiplied with each channel Ai. The parameter n de�nes the number
of channels and C is the blended image which will be subsequently used for the
further analysis.

3.2 Classifying Genetic Perturbations based on DCMIX-blended

Images

Our goal is to learn a classi�cation model Fθ(y | C) of the blended image C for
distinct classes of genetic perturbations yc where c is the number of genetic per-
turbations to be predicted. In this work, our model F is a Deep Convolutional
Neural Network which extracts a cascade of feature maps M l where l denotes
the current layer. The last feature map is used as an input to the multi-class clas-
si�cation head that predicts the genetic perturbation vector yc using a softmax
output.

3.3 End-to-End Training Algorithm

The model training is described in Algorithm 1. As an input, we use the multi-
spectral images X and the genetic perturbation labels y. Subsequently, we draw
minibatches from the training data X, y (line 1). For each of the minibatches, we
obtain the blended images ci as well as the corresponding mixing factors αi. The
blended images ci are fed in the neural network Fθ (line 3) and the correspond-
ing predictions ŷi are used to calculate the loss in line 5. Finally, we update the
parameters θ and α based on the loss by using gradient descent (line 7).

4 Experiments

A description of setups and additional hyperparameters can be found in the
supplementary materials.
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Algorithm 1 DCMIX training algorithm

INPUT: X images, y labels
OUTPUT: The prediction ŷ, mixing factors α

1: for minibatch xi, yi from X, y do
2: ci, αi ← DCMIX(xi)
3: ŷi ← Fθ(ci)
4:
5: loss← crossentropy(ŷi, yi)
6:
7: update θ, α using gradient descent
8: end for

4.1 MNIST

Dataset. To demonstrate the e�cacy of DCMIX for estimating channel impor-
tance, we generate an arti�cial dataset based on MNIST [10]. MNIST consists
of 70000 samples with images x ∈ R28x28x1 and labels y that represent numbers
from 0 to 9. For our dataset, we randomly select a subset of 10000 samples from
MNIST. In order to assess the channel importance, we extend the MNIST im-
ages with two additional noise channels. Therefore, we draw two noise matrices
with shape 28x28 from a uniform distribution de�ned on [0, 255]. Subsequently,
we add the previously generated noise channels to the input image such that
we obtain a three channel input image x ∈ R28x28x3 where the �rst denotes
the most important channel. For training, we split the data into a 70 percent
training and a 30 percent hold-out set. The training set is further split into a 80
percent training and 20 percent validation set, respectively.

Models. In order to demonstrate the e�ectiveness of our approach, we bench-
mark DCMIX against a plain LCNet050, LassoNet [22] as well as on an attention-
based [29,25] LCNet050.

Quantitative Evaluation. Channel Importance In this experiment, we
evaluate the channel importance on the validation set, and the results are re-
ported in Table 1. As we can observe in the channel importance ranking, DCMIX
can e�ectively learn the most important channel one and is in line with the more
complex LassoNet and attention-based LCNet050. At the same time, DCMIX
requires only a fraction of GFLOPS and model parameters. More speci�cally,
DCMIX requires solely 5.9271 GFLOPS compared to 17.809 GFLOPS for the
Attention-LCNet050. In addition, DCMIX need three times less parameters
(0.2789 million) in contrast to Attention-LCNet050 (0.9281 million) and requires
only the same amount of GFLOPS and parameters as the plain LCNet050.

Quantitative Evaluation. Model Performance Despite the fact, that the
aim of this method is not to improve the model performance but rather learn
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Table 1. Results of the MNIST channel importance and model size. Channel impor-
tance ranking denotes the rank of the weights depicted in the second column. The
model size is evaluated on GFLOPS and the number of model parameters where lower
is better.

Method Channel
impor-
tance
ranking

Channel weights GFLOPS # Parameters
(million)

LCNet050 - - 5.9269 0.2789
LassoNet [22] 1,3,2 120259, 51003, 52318 - -
Attention[29,25]-
LCNet050

1,3,2 1,3.24× 10−11, 2.33× 10−6 17.809 0.9281

DCMIX-
LCNet050

1,3,2 0.82,0.21,0.22 5.9271 0.2789

the most important channel to gain biological insights for a drug discovery ex-
periment, we want to ensure that DCMIX archives competitive performance to
state-of-the art approaches. To do so, we compared DCMIX to a plain LCNet050,
LassoNet and Attention-LCNet050 in Table 2. Here, we observe that DCMIX ob-
tains competitive results compared to both LCNet050 and Attention-LCNet050
and outperforms LassoNet on accuracy, precision, recall and f1-score measures.

Table 2. Results of model performance for the MNIST dataset on the hold-out dataset.
We assess the model performance on four di�erent metrics: accuracy, precision, recall
and f1-score where higher is better. Values in brackets denote the standard deviation.

Method Accuracy Precision Recall F1-Score

LCNet050 0.992 (0.0008) 0.991 (0.002) 0.991 (0.002) 0.991 (0.002)
LassoNet [22] 0.963 (0.012) 0.888 (0.002) 0.888 (0.002) 0.887 (0.002)
Attention[29,25]-
LCNet050

0.992 (0.002) 0.991 (0.001) 0.991 (0.001) 0.991 (0.001)

DCMIX-LCNet050 0.991 (0.002) 0.990 (0.002) 0.990 (0.002) 0.990 (0.002)

4.2 RXRX1

Dataset. For our real world experiment, we employ the RXRX1 dataset[42]
which consists of 125510 512x512 px �uorescence microscopy images (6 channels)
of four di�erent human cell lines that are perturbed with 1138 genetic pertur-
bations (including 30 di�erent positive control perturbations). In this study, we
used as the training data 30 positive control siRNAs plus the non-active control
which lead to 31 classes in total. All images were normalized using the 1 and
99 percent percentile and after, we extract image patches with a size of 192x192
px and an o�set of 96 px. This step leads to 32776 image patches. For training,
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we split the data into a 70 percent training and a 30 percent hold-out set. The
training set is further split into a 80 percent training and 20 percent validation
set, respectively.

Models For the real-world RXRX1 experiment, we compare DCMIX to Las-
soNet [22] and the attention-based [29,25] LCNet050.

Table 3. RXRX1 channel importance evaluation for the HepG2 cell line. The impor-
tance ranking illustrates the most important channels form left to right based on the
weights depicted in the second column. In addition, model statistics are measured in
GFLOPS and the number of model parameters (lower is better).

Method Importance
ranking

Channel weights (in Chan-
nel order)

GFLOPS # param-
eters (mil-
lions)

ViT-B16-Imagenet21k
[11] + LassoNet [22]

6,4,1,5,2,3 73084, 52526, 31138, 87881,
55612, 107733

- -

Attention-LCNet050 4,2,5,1,3,6 0.15, 0.17, 0.008, 0.48, 0.16,
0.007

35.61 1.75

DCMIX-LCNet050 4,2,3,5,1,6 0.30, 0.69, 0.38, 1.06, 0.36,
0.21

5.95 0.27

Quantitative Evaluation. Channel Importance Here, we describe the eval-
uation results on channel importance for the RXRX1 dataset which is illustrated
in Table 3. To do so, we compare the results to the ground truth introduced in
[42]. The experiment was manually designed by a scientist in the laboratory such
that both channels four and two hold the most important biological information
and channel 6 contains no important information for the phenotype. Keeping this
information in mind, we assess the channel importance of DCMIX, LassoNet and
Attention-LCNet050. Here, we can con�rm that DCMIX learns the two most im-
portant channels four and two and the least important channel 6. These �ndings
are also supported by Attention-LCNet050 which learned equivalent importance
values. In contrast, LassoNet fails to uncover the correct channel importance by
selecting the least important channel as the most important one. Despite �nd-
ing the same important channels, DCMIX possess a 6-8 times higher speed and
requires 6 times less parameters compared to the attention based networks and
can be used in an end-to-end fashion which is not feasible for LassoNet.

Quantitative Evaluation. Model Performance In this experiment, we eval-
uate the model performance of DCMIX to LassoNet and Attention-LCNet050
and illustrate the results in Table 4. Here, we observe that DCMIX outperforms
both LassoNet and Attention-LCNet050 in terms of accuracy by �ve and seven
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percent, respectively. Furthermore, these �nding are con�rmed by precision, re-
call and f1-scores where DCMIX outperforms both competitors by approximately
�ve and seven percent.

Table 4. Results of model performance for the RXRX1 dataset on the hold-out dataset.
We asses the model performance on four di�erent metrics: accuracy, precision, recall
and f1-score where higher is better. Values in brackets denote the standard deviation.

Method Accuracy Precision Recall F1-Score

ViT-B16-Imagenet21k
[11] + LassoNet [22]

0.695 (0.004) 0.705 (0.005) 0.705 (0.004) 0.704 (0.005)

Attention[29,25]-
LCNet050

0.744 (0.019) 0.753 (0.014) 0.747 (0.014) 0.747 (0.013)

DCMIX-LCNet050 0.765 (0.004) 0.77 (0.037) 0.77 (0.042) 0.764 (0.043)

5 Discussion

DCMIX demonstrates state-of-the-art channel importance scores in

�uorescence cellular imaging DCMIX employs image blending to estimate
the importance of each image channel. In Figure 2, we provide an overview of
the Spearman rank correlation of the channel importance estimates for all tested
methods. The results are comparable for all methods (except of LassoNet) with
a Spearman ρ always larger than 0.83. Especially the correlations of DCMIX and
Attention-LCNet050 to the ground truth shapley values from [42] are evident
with a Spearman ρ of 0.89. Both methods estimate the channel 2 and 4 as
most important and channel 6 as least important which was the intentionally
experimental design and furthermore shown via shapley values [42]. The authors
explained their �nding with a very large spectral overlap of the �uorescence
signal from channel 2 and 4 to any other channel rendering them more important
[42].
In contrast, LassoNet does not show any overlap with the rankings selected by
all other methods (Figure 2) with a maximal Spearman ρ value of -0.08.

DCMIX achieves state-of-the-art classi�cation performance with lower

model complexity Across all classi�cation metrics DCMIX archives competi-
tive results on MNIST and state-of-the-art performances on real-world RXRX1
compared to its competitors. Intuitively, we attribute the competitive results on
MINST to the problem simplicity which is further supported by the high classi�-
cation scores of 99% (Table 2). Concurrently, DCMIX requires merely a fraction
of model parameters in all experiments (Tables 1,3) compared to the baselines.

Practical runtimes for DCMIX are 6-8 times faster than Attention-

based approaches While DCMIX requires only 5.9271 GFLOPS and 5.95
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Fig. 2. Visualization of Spearman's rank correlation coe�cient of the channel impor-
tance estimates for all di�erent methods from Table 3. A value of -1 indicates maximal
ranking di�erence between the channel importance estimates, 1 indicates no di�erence.
Matrix has been sorted using average linkage hierarchical clustering with euclidean
distance.

GFLOPS on RXRX1, achieving the same computational performance as plain
LCNet050, Attention-LCNet050 needs 17.809 GFLOPS on MNIST and 35.614
GFLOPS on RXRX1, respectively (Table 1 and Table 3). Moreover, even post-
hoc approaches such Shapely values that are trained on a black-box model re-
quire often more signi�cant computation time. For example, the training time
required for the Shapley value explanation are in the range of several minutes for
the smaller CIFAR-10 dataset [16]. This demonstrates that the speed of DCMIX
outperforms not only interpretable competitors but also explainable post-hoc
approaches on a large scale.

DCMIX is applicable in real-world settings beyond biomedical imag-

ing From an application standpoint we see an advantage of DCMIX over the
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other tested methods, as the high scalability of DCMIX allows a model training
work�ow were channel importance is � per default � applied, such that a scien-
tist gets immediate feedback about where the classi�cation relevant information
is coming from, and whether it correlates with the known understanding of the
underlying biology.
DCMIX scales very well with the number of channels due to the addition of only
one additional parameter per additional channel. This is particularly interesting
for hyper spectral applications where hundreds of channels exist (e.g. in remote
sensing) � a highly interesting application area for subsequent studies.
In addition, DCMIX allows for any arbitrary downstream network which can be
�ne-tuned / designed for other applications than �uorescence imaging.
DCMIX applies currently a simple addition channel mixing strategy to estimate
channel importance without losing any classi�cation performance (see model
performance in Table 2 and 4). In principle several other channel blending meth-
ods exist, e.g. di�erence, multiplication or luminosity. Due to the �exibility of
DCMIX these other mixing strategies can be easily integrated. Several studies
already show the applicability of complex multi-spectral channel blending for
visualization and classi�cation in remote sensing [1,18].

6 Conclusion

In this work, we present a novel lightweight framework, DCMIX, which estimates
channel importance of �uoresce images based on image blending. This empowers
us to estimate phenotype-focused interpretations in a simple yet e�ective man-
ner. Our experimental results demonstrate that the channel importance scores
uncovered by DCMIX are both biologically supported and in line with competi-
tive state-of-the-art approaches on MNIST and RXRX1 datasets. Concurrently,
DCMIX is more e�ective in terms of runtime and scaleable to an arbitrary num-
ber of channels without scarifying the model performance.

Limitations. We discuss the limitations of our approach in the following two
aspects. (1) The weights of DCMIX which determine the channel importance are
solely a proxy and do not explain the absolute importance between channels. (2)
DCMIX is based on image blending and hence only supporting image-based
datasets. For future work, we plan to investigate how DCMIX can be extended
to other data modalities.
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