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Abstract. The prostate carcinoma (PCa) is the second most common
cause of cancer-deaths among men. To estimate the appropriate therapy
pathway after diagnosis, the Gleason score (GS) has been established as
an international measure. While the GS has been proven to be a good
tool for tumour assessment, it naturally suffers from subjectivity. Espe-
cially for cancers of lower to medium severity, this leads to inter- and
intra observer variability and a remarkable amount of over- and under
therapy. The PCa thus is in the focus of various research works, that
aim to improve the grading procedure. With recently emerging AI tech-
nologies, solutions have been proposed to automate the GS-based PCa-
grading while keeping predictions consistent. Current solutions, however,
fail to handle data variability arising from preparation differences among
hospitals and typically require a large amount of annotated data, which
is often not available. Thus, in this paper, we propose self-supervised
learning (SSL) as a new perspective for AI-based PCa grading. Using
several thousand PCa cases, we demonstrate that SSL may be a feasi-
ble alternative for analysing histopathological samples and pretraining
grading models. Our SSL-pretrained models extract features related to
the Gleason grades (GGs), and achieve competitive accuracy for PCa
downstream classification.

Keywords: Prostate Cancer · Self-Supervised Learning · Artificial In-
telligence.

1 Introduction

AI technologies are already a widespread choice in various histopathological
applications, including those focusing on the PCa. Current research work and
emerging commercial solutions use supervised training to create convolutional
neural networks (CNNs) that can extract features that match cancer-driven mor-
phological changes and thus can reproduce the GS.

Impressive results for the PCa can be found, even in early works such as the
ones of Arvaniti et al. [1] or Nagpal et al. [19], where ∼ 70% of the expert’s GS
could be reproduced. Bulten et al. [5] achieve an area under the receiver oper-
ating characteristics curve (AUC-ROC) of 0.984 for the tumour vs. non-tumour
problem. Tolkach et al. [24] even achieve a binary accuracy of over 95% using
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a slightly more complex deep learning pipeline. Similar results are achieved by
Ström et al. [23] with an AUC-ROC of 0.997. Finally, using CNNs for PCa grad-
ing is also part of various international challenges such as the PANDA challenge
(c.f. [3] et al.), where a maximum quadratically weighted kappa of 0.86 was
achieved by the best team on international validation data. Supervised train-
ing methods, however, require huge amounts of labelled data, which is often
not available, and suffer from limited annotation quality or missing patholog-
ical consensus. Hence, poor generalization is often observed, as results worsen
significantly for data which originates from other laboratories (c.f. [22]).

Recent advances in computer vision have shown, that SSL may be of value,
to omit these issues, and may even improve performance achieved by super-
vised models [8,6,13,18,29]. To do so, SSL uses CNNs and visual transformers
(ViTs)[16], but generates training signals from the data itself rather than using
manual annotations. Early works such as the one of Bulten et al. [4], who ap-
plied SSL to PCa data using an autoencoder [26] could show that this method
may be feasible for PCa histopathological analysis. Their approach, however,
fails to distinguish more groups than benign, stroma and tumour. The problem
seems to arise due to the autoencoder’s limited capability, to extract robust,
discriminative features.

More recent works suggest the definition of pretext tasks, that do not re-
quire a generative model, as in the case of an autoencoder. Such tasks may be
the prediction of an image’s rotation [10], solving of jigsaw puzzles [20], predict-
ing generated pseudo-labels [27], or comparing feature vectors in a contrastive
setup using an original and augmented image version [18,29,8,13]. The value of
SSL for histopathology is demonstrated by Yan et al. [28], who trained an SSL
model on various publicly available histopathology datasets and almost achieved
supervised performance on the CAMELYON dataset1.

Currently, only few works have investigated the value of SSL for PCa histo-
pathological analysis. Thus, we evaluated recent SSL methods using the PANDA
dataset. We conclude that SSL may be a good future path and direction to elimi-
nate human bias from cancer grading while keeping a high standard of assessment
accuracy and reproducibility. The following sections provide information about
our experimental analysis and conclusions.

2 Materials and Methods

To train histopathological PCa models using SSL, we implemented a process-
ing pipeline as depicted in Fig. 1. First, we sample image patches from a few
thousand original core needle biopsy (CNB) images and select up to 16 patches
per CNB according to the most amount of relevant tissue. Additionally, mul-
tiple CNBs are filtered as they are duplicates or contain very noisy labels, as
suggested in the winning solution2 of the PANDA challenge. For each image
patch X, we then create multiple augmented versions X̂ and process them using
1 https://camelyon17.grand-challenge.org
2 kaggle.com/competitions/prostate-cancer-grade-assessment/discussion/169143

https://camelyon17.grand-challenge.org
kaggle.com/competitions/prostate-cancer-grade-assessment/discussion/169143
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Fig. 1. Overview of the training and validation method.

a feature encoder. It’s noteworthy to say that for one of our approaches (Sim-
CLR) only augmented versions of X will be fed to the CNN. To perform whole-
slide-image(WSI)-wide prediction, information from multiple patches needs to
be aggregated. Thus, we implement the feature aggregation as suggested by the
PANDA baseline3 as a configurable alternative to processing the individual im-
age patches directly. The key aspect of the feature aggregation is to concatenate
multiple CNN-extracted features A of the same WSI in a global feature matrix
B, such that

B = concat(A) : R(BS·N)×C×I×J → R
BS×C×(N ·I)×J (1)

whereas BS is the batch size, I and J are the feature shape, C are the kernel
map channels and N is a fixed number of patches. The features of the original
and augmented patches are then processed by fully connected layers (projection
heads) followed by pooling. Afterwards, a contrastive loss is calculated based on
these projected feature vectors Â, or B̂ respectively, as described in subsection
2.1. Finally, we perform multiple downstream tasks for evaluation, as described
in section 3.

2.1 Self-Supervised Training Methods

The main idea of self-supervised learning (SSL) is to train a neural network in
such a way that it learns to capture fundamental morphological properties of
images without relying on labelled data. In traditional supervised learning, a
neural network is trained on a labelled dataset, where each image is associated
with a specific class or label. However, obtaining labelled data can be expensive
and time-consuming, especially in domains like medical imaging.

In SSL, instead of using external labels, the network is trained to predict
certain image modifications or transformations applied to the original image.
For example, the network may be trained to predict the rotation angle [10] or
to withstand cropping [8,6,7] applied to the image. Let’s denote the unlabelled
3 kaggle.com/competitions/prostate-cancer-grade-assessment/discussion/146855

kaggle.com/competitions/prostate-cancer-grade-assessment/discussion/146855
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dataset as D = x1, x2, ..., xn, where xi represents an input image in the dataset
and n is the number of images in the dataset. The goal of SSL is to learn a
representation function ϕ(x) that maps each input image xi to a feature vector
ϕ(xi) in a latent space. The overall SSL objective can be formulated as follows:

θ∗ = argmin
θ

(
1

n

n∑
i=1

L (Φ(xi; θ), T (xi))

)
(2)

whereas

– θ∗ represents the optimal model parameters that minimize the overall loss.
– ϕ(xi; θ) is the feature vector obtained by applying the representation function

ϕ with parameters θ to the input image xi.
– T (xi) is the target label or artificial target for the pretext task associated

with the input image xi.
– L(ϕ(xi; θ), T (xi)) is the loss function that measures the discrepancy between

the predicted target (ϕ(xi; θ)) and the actual target (T (xi)) for the pretext
task.

The advantage of using SSL in PCa histopathology lies in its potential to extract
discriminative features that are not biased by subjective factors, in contrast to
directly optimising to the Gleason score. Traditionally, grading PCa involves
human pathologists assigning a GS to each tissue sample based on visual ap-
pearance. However, this process can be subject to inter-observer variability and
lacks objectivity. SSL circumvents the need for GS labels and allows the model
to identify intrinsic morphological patterns in the images, which could directly
correlate with clinical outcomes like time to biochemical recurrence (BCR) or
death of disease (DoD). This opens up new avenues for computer-aided diagno-
sis and precision medicine in the context of prostate cancer and other medical
imaging applications.

SimCLR is one of the earliest, yet still popular, SSL methods. It involves pro-
cessing images X into augmented versions xi and xj that will be fed through a
convolutional neural network (CNN) trunk, followed by a fully connected mul-
tilayer perceptron (MLP). Augmentations may be colour jitter, cropping and
scaling of smaller image parts, or blurring the images, as described in section
3. This process generates feature vectors zi and zj of configurable length for all
images.

To train the SimCLR model, an important component is the InfoNCE loss
[21]. The objective of the InfoNCE loss is to maximize the similarity between
feature vectors of the original image’s augmented versions (zi, zj), while also
minimizing the similarity to feature vectors of all other images’ augmentations
zk in the batch. This encourages the model to learn representations that effec-
tively capture the essential information present in the original images and their
augmented versions. The loss is calculated and used to find optimal parameters
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ϕ and ω of the trunk and MLP according to (c.f. [8]):

InfoNCE(ϕ, ω) = argmin
ϕ,ω

− log
esim(zi,zj)∑2N

k=1 1[k ̸∈(xi,xj)]e
sim(zi,zk)/τ

(3)

where

– ϕ and ω are the parameters of the CNN trunk and the MLP, respectively,
which need to be learned during training.

– N is the batch size, and 2N is the size of the augmented batch.
– zk represents the feature vectors of the remaining batch images.
– sim(zi, zj) is the similarity metric between the feature vectors. It is often

computed as the dot product of the feature vectors divided by the product
of their norms, which is equivalent to measuring the cosine similarity.

– 1[k ̸∈(xi,xj)]e
sim(zi,zk)/τ is an indicator function that equals 1 if k does not

belong to the set containing xi and xj , and 0 otherwise. This ensures that
xi and xj are not compared to themselves during the loss calculation.

– τ is a hyperparameter that acts as a temperature parameter, controlling how
strongly the feature vectors zi and zk are pushed apart in the latent space.
It is analogous to the temperature parameter used in a softmax function
during training.

By optimizing the SimCLR model with the InfoNCE loss, the CNN trunk and
MLP learn to create powerful and transferable image representations, which can
be used in downstream tasks like image classification or object detection without
the need for labelled data.

DINO is an innovative self-supervised learning method that takes a different
approach compared to traditional methods like SimCLR. Instead of using convo-
lutional neural networks (CNNs), DINO employs visual transformers for process-
ing images X and their augmented versions X̂. In contrast to SimCLR, which
considers multiple images in the batch for comparison, DINO only compares
each image with its augmentation within the cost function.

DINO uses two models: a student model gω,s and a teacher model gω,t. These
models process the images X and X̂ to generate feature representations. Both
models are visual transformers, a type of architecture that has shown great
success in capturing complex image patterns, and provide good feature capturing
capabilities both in spatial and global context.

Before comparing the feature representations, the teacher model gω,t pro-
cesses the original images X to generate the feature vectors zt = gω,t(X)). These
feature vectors are centred using the batch mean, which helps to remove any bi-
ases and normalize the representations. Both the feature vectors of the student
model zs = gω,s(X) and the teacher model zt are sharpened using the Softmax
function with an additional temperature parameter τ . The Softmax function
amplifies the differences between class probabilities, leading to more discrimi-
native features. The temperature parameter τ controls the concentration of the
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probability distribution, where higher values result in softer probabilities and
vice versa.

The loss is calculated on the probabilities pt and ps as in Caron et al. [7]:

H = −pt · log ps (4)

The objective of the loss function is to iteratively match the probability distri-
butions of the student and teacher models. By minimizing this cross-entropy loss,
the student model learns to mimic the teacher model’s predictions and aims to
achieve similar probabilities for corresponding images and their augmentations.

Another difference between DINO and contrastive SSL like SimCLR is the
use of an asymmetric weight update that prevents mode collapse of the ex-
tracted features. During training, the student model is updated using standard
backpropagation with stochastic gradient descent (SGD) or other optimization
algorithms. The goal is to minimize the cross-entropy loss between the teacher’s
and student’s probabilities. The teacher model, on the other hand, is updated
differently. Instead of using large batches or memory banks for negative sam-
ples as in contrastive methods, DINO employs an elegant solution by updating
the teacher model using the exponential moving average (EMA) of the student
model’s parameters. This technique helps to stabilize and improve the perfor-
mance of the teacher model over time. By slowly updating the teacher model
to follow the student model’s latest state, DINO creates a smoother and more
reliable teacher model for guiding the student’s learning process.

In summary, DINO’s setup and cost function leverage visual transformers,
distillation, and iterative matching of probability distributions to learn pow-
erful and transferable image representations in a self-supervised manner. This
approach presents a promising alternative to CNN-based methods, demonstrat-
ing the effectiveness of visual transformers in addressing the challenges of self-
supervised learning with impressive performance results.

2.2 Dataset and Training Details

We use data from the PANDA grand challenge, which contains core needle biopsy
(CNB) images taken from Radboud (n = 5160), and Karolinska (n = 5456)
hospitals. In total, n = 10616 images are available including their annotated
primary and secondary GGs and the GS, as well as the ISUP grade groups
(IGGs). Furthermore, masks are provided to split the images into tumour, stro-
mal and non-tumour regions, and in the Radboud cases even GG masks. For the
Radboud data, the GS distribution is relatively balanced except for GS 10 (2%
share), whereas Karolinska data mostly contains cases of low- to medium sever-
ity. After cropping and filtering the CNB images, the l1 (20× magnification at
half resolution) region-annotated (:= ROI) training and test set contains 94678
and 31560, and the non-ROI dataset contains 168256 l2 (20× magnification at
quarter resolution) and 157740 l1 images.

We test two different SSL methods as described above, with residual Net-
works (ResNet-18 & 50) [14], as suggested in the PANDA challenge, and a
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ViT-B-16 for small datasets as suggested by Lee et al. [16]. Additionally, other
frameworks that use a joint embedding architecture, namely SwAV [6], BYOL
[12], and MOCO [9], have been tested. As their results were inferior to SimCLR
and comparable to DINO, we only present the results of those two methodically
diverse approaches. For training, we use PyTorch (1.11.0), Python (3.9) and the
training frameworks fastAI (2.7.11) [15] and VISSL (0.1.6) [11]. All parameters
are tuned using a grid search. Tab. 1 provides an overview of important augmen-
tation techniques and projection heads, as well as training- and hyperparameters
extracted from the grid search. For DINO, using multiple augmentations pro-
duced instable training behaviour. Thus, as suggested in [2], we reduced the
number of augmentations to reduce the pre-text task complexity. Finally, we
only used RandomCrop.

Table 1. Parameter configurations and setup of the SSL algorithms used in this study.

Algorithm Augmentations Hyperparameters Training Parameters Model

SimCLR

RandomCrop,
RandomFlip,
ColorDistortion,
Gaussian Blur

temperature: 0.7

multi learning rate:
• base: 5e-4,
• linear: [1e-4, 16e-4],
• cosine: [16e-4, 16e-7]
SGD/ranger optimizer:
• weight decay: 1e-6,
• momentum 0.9,
• batch size: 32

ResNet-18/50 +
MLP:
[nc, nc],
[nc, 128]
nc=512 / 2048

DINO RandomCrop

teacher τ :
[0.01 - 0.02]
student τ : 0.4
ema center: 0.9

multi learning rate:
• base: 0.05,
• linear: [1e-6, 2e-4],
• cosine: [2e-4, 1e-6]
AdamW optimizer:
• weight decay: 1e-6,
• batch size: 32

SmallVit-B16 +
MLP:
[384, 384],
[384, 32]

3 Experiments

To evaluate the potential of the SSL-trained feature encoders, we run multiple
downstream tasks. The results are presented in this section. The models are
trained using an NVIDIA P100 and V100 card. SSL pretraining takes the most
memory and processing time of 28 GB and 96 hours, as our setup only allows
creating batches up to size 32 for l1 images, and therefore convergence was only
observed after a few hundreds of epochs (c.f. [8]). The supervised models require
around quarter the processing time of SSL and converge at around epoch 30.
Feature aggregation is used for models in the IGG downstream task and omitted
in patch-wise downstream tasks.
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Table 2. Overview: Configuration of the self-supervised (SSL) and supervised (SUP)
experiments conducted in this study.

No. Training Network Concatenated Evaluation
Type Architecture Features Method

1 SSL SimCLR (ResNet-18) No Embedding Visualization
2 SSL DINO No Embedding Visualization
3 SUP ResNet-18 No Embedding Visualization
4 SSL SimCLR (ResNet-18) No Patch Downstream Classification
5 SSL DINO No Patch Downstream Classification
6 SUP ResNet-18 No Patch Downstream Classification
7 SSL SimCLR (ResNet-18) No Slide Downstream Classification
8 SSL SimCLR (ResNet-18) Yes Slide Downstream Classification
9 SUP ResNet-18 Yes Slide Downstream Classification
10 SUP ResNet-50 Yes Slide Downstream Classification

We conducted multiple SSL trainings using different algorithms and down-
stream tasks. In addition, the models were trained in a supervised fashion, to
get a fair comparison. Tab. 2 gives an overview of all conducted experiments.
The data for each experiment was structured as in Tab. 3.

3.1 Qualitative Analysis

To get an initial understanding of SSL’s capabilities to extract features that align
with the GGs, we first perform qualitative analysis using the principal component
analysis (PCA) [17] of the feature vectors. For this first downstream task, we
only use the Radboud part of the data, as stain differences among hospitals are
known to hinder the model from achieving good results. We thus decided to
exclude this influence, as stain normalization is not the focus of this study. If
the model extracts features that correlate with known prognostic morphologies,
the scatter plot of the features’ PCA should show separable clusters for each

Table 3. Data used for the individual experiments, including label amount. For sce-
narios where patches are processed (1-6) the number of labels equals the input images,
and for WSI-processing approaches (7-10) 16 input images equal one label.

No. Image Size Quality No. Training Labels No. Downstream Labels

1-2 128×128 l1 0 -
3 128×128 l1 94678 -

4-5 128×128 l1 0 5917
6 128×128 l1 94678 -
7 128×128 l2 0 657
8 128×128 l2 0 657
9 128×128 l2 10516 -
10 128×128 l1 9858 -
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a) Supervised Model b) DINO Model c) SimCLR Model

Fig. 2. Scatter plots of the first three PCA main components of patch features gener-
ated by the supervised, DINO and SimCLR feature encoders.

of the annotated labels. Fig. 2 shows the scatter plot. For the model trained
in a supervised fashion, expectations are met. Except for a few cases of low
severity which are confused with benign tissue, as well as some confusion between
individual GGs, all labels seem to produce separable representations. Yet, the
fact that variance among the features seems to be low may be an indicator of
missing robustness, as the PCa’s heterogenous morphologies should be reflected
by the extracted features. The DINO model only produces very rudimentary
clusters. In the left part of the plot a cluster of benign tissue can be found
which appears to be separable from tumour region patches. Overall, however, a
great degree of entangling is observed. This accounts especially for GG5 patches,
that can’t be distinguished from any of the classes. While the GG5 patches
have the lowest class share, this behaviour likely refers to weak features, as
at least no overlap should happen with the benign patches (c.f. Fig. 2 a). The
SimCLR also shows some entangling but generally appears to extract meaningful
features, as clusters of the referred GGs can be observed. In contrast to the
DINO model, GG5 shows almost no confusion with the benign tissue and also
has clearly separable samples. For the remaining tissue samples, we observe a mix
between separable samples and entangled ones. From the qualitative analysis, it
was already getting obvious that supervised training provides the best feature
extractor, while DINO will likely fail to produce features for detection of the
highest severity (GG5), and SimCLR probably achieves plausible but mid-tier
results.

3.2 Patch-wise Performance Analysis

To further investigate the effects of SSL training, we analyse the downstream per-
formance using a logistic regression to predict individual patches’ GGs. Results
are created as the mean of a 3-fold leave-on-out cross validation using the features
generated from the ROI test data. Tab. 4 shows the cross-validation performance
results as indicated by mean class balanced accuracy and quadratic weighted
kappa (BA; QWK), tumour vs. non-tumour balanced accuracy and quadratic
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Table 4. Mean patch-wise performance of the different models, in a 3-fold leave-one-
out cross validation. The labels refer to benign (B), and Gleason grade 3, 4 and 5
(GG3-5).

Model resolution BA QWK BBA BQWK f1B f1GG3 f1GG4 f1GG5

Supervised 1282px@l1 0.83 0.89 0.94 0.87 0.89 0.89 0.91 0.69
SimCLR 1282px@l1 0.63 0.68 0.83 0.65 0.71 0.79 0.78 0.38
DINO 1282px@l1 0.52 0.59 0.79 0.59 0.66 0.59 0.73 0.11

weighted kappa (BBA; BQWK), and f1 scores of the individual classes. As ex-
pected, the DINO model shows the worst results, with a balanced accuracy (BA)
of 0.52 and quadratic weighted kappa (QWK) of 0.59. Especially, the f1 score of
the GG5 patches was lower than random guessing with 0.11. For the supervised
model, BA of 0.83 and QWK of 0.89 was achieved. The GG5 show the lowest f1
score here as well. SimCLR performs better than the DINO model, while also
struggling to classify GG5 patches correctly. Binary BA (BBA) indicates that
most false positives arise from confusing tumour classes with each other. In to-
tal, the SimCLR performance slightly improves the results achieved in our earlier
works (c.f., [5]) using autoencoders, but still is outperformed by the supervised
pendant.

3.3 WSI-wise Performance Analysis

While the results achieved in patch-wise classification were promising, they are
of less practical relevance, as in a real-world setup predictions need to be done
for the WSI rather than individual patches. This task is more challenging, as
the network also needs to understand the context of a single patch within its
WSI. We thus perform a second classification downstream task to predict the
WSI’s IGG using the non-ROI l2 dataset and the same preprocessing, validation
strategy and split ratio as before. Multiple setups are evaluated, as presented in
Tab. 5. For the SSL models, the encoder part was frozen after training and only
the aggregation and projection head are fine-tuned. For fine-tuning and training
of the supervised pendants, kappa loss [25] yields the best results. For the SSL
part, we focus on the SimCLR model, as DINO didn’t appear to deliver useful
results.

In general, training by SimCLR without feature aggregation achieves inferior
results. For the QWK, the best results at lowest magnification are achieved by the
supervised model. The results are in accordance with the PANDA challenge’s
baseline solution. Tab. 5 suggests that significant differences between the f1
scores of the individual IGG can be found. The worst results are achieved for the
IGGs that contain the most heterogenous patterns. This seems plausible, as the
training method enforces the network to not only extract meaningful features,
but also to decide which features in combination are connected to a certain IGG.
Thus, better f1 scores are achieved, if less feature variance is present. As the
QWK not necessarily captures this behaviour, we also compare for balanced
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Table 5. Mean WSI-wise performance of the different models, in a 3-fold leave-one-out
cross validation. The labels refer to benign (B) and the IGGs 1-5 (I1-I5).

Model resolution BA QWK BBA BQWK f1B f1I1 f1I2 f1I3 f1I4 f1I5

SimCLR
ResNet-18 1282px@l2 0.41 0.57 0.75 0.47 0.63 0.44 0.29 0.24 0.28 0.51

SimCLR
ResNet-18 +
concat

1282px@l2 0.51 0.65 0.85 0.64 0.75 0.54 0.42 0.33 0.46 0.57

Supervised
ResNet-18 +
concat

1282px@l2 0.50 0.76 0.83 0.62 0.74 0.54 0.30 0.34 0.25 0.62

Supervised
ResNet-50 +
concat

1282px@l2 0.50 0.74 0.83 0.64 0.75 0.56 0.34 0.28 0.40 0.58

accuracy and individual f1 scores. Here, the SimCLR model achieves the best
results most of the time, whereas some results are shared with the supervised
ResNet-50. The most prominent advantage can be seen for IGGs two and four.

As l1 images are known to create better accuracies in supervised training (c.f.
[3]), we repeat the experiment with non-ROI l1 images. In this case, similar to
the PANDA challenge’s results, BA of 0.7+ and QWK of 0.85+ were achieved
when using a supervised ResNet-50. For SimCLR, We found that batch size
seems to be a critical factor here, but couldn’t fully investigate the limits of
SSL performance, as the required amount of graphical memory is exceeding
our technical capabilities. The results, even though of low BA and QWK, still
indicated a balanced behaviour as for the l2 images.

4 Discussion

In this paper, we showed, that SSL pretraining may be a promising method,
to create state-of-the-art PCa grading models, with significantly less effort in
annotating cases beforehand. Our models achieve better results in qualitative
and quantitative analysis than earlier autoencoder-based works.

Current supervised models are limited by the accuracy of the pathologists
themselves (e.g., for PANDA the accuracy of the annotating pathologists against
expert consensus, similar to the CNNs, was only at 72%). Our results indicate,
that SSL pretraining has the potential to extract prognostic features, which are
unaffected by this issue. SSL thus provides a platform to combine morphological
information with follow-up-based endpoints as BCR or DoD to directly identify
prognostic features after SSL pretraining.

When training the models, we observed, that various hyperparameters such as
the batch size and image resolution can have a significant impact on the results.
Thus, to fully evaluate the limits of the presented approach, future work should
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apply a more sophisticated hyperparameter tuning and architecture search. Fur-
thermore, one main issue of the IGG prediction seems to be directly connected
to the concatenation-based training. For the SSL approach, this also comes with
the downside of high graphical memory consumption. We thus propose, to in-
vestigate better strategies for combining various features in future works.

Another important research direction could also lie in using SSL as a data
exploration tool. Even though the SSL pretraining reduced the amount of re-
quired labels to achieve state-of-the-art classification results to 25% compared
to the supervised approach, a total amount of 657 annotated patient cases is still
a lot. Our qualitative analyses showed that morphological groups are identified
by the algorithm. Hence, SSL may have the capability to reduce the amount of
annotated cases even further, by labelling, e.g., the most uncertain cases in an
expert-in-the-loop approach.

We conclude that, given the promising results of our work, SSL deserves
to get more attention in histopathology. This especially accounts for creating
an expert-in-the-loop system, which could also help pathologists to gather new
knowledge from the AI, rather than only providing it.
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