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Abstract. Post-hoc explanation methods have often been criticised for
abstracting away the decision-making process of deep neural networks.
In this work, we would like to provide natural language descriptions
for what different layers of a vision backbone have learned. Our DeViL
method generates textual descriptions of visual features at different layers
of the network as well as highlights the attribution locations of learned
concepts. We train a transformer network to translate individual image
features of any vision layer into a prompt that a separate off-the-shelf
language model decodes into natural language. By employing dropout
both per-layer and per-spatial-location, our model can generalize training
on image-text pairs to generate localized explanations. As it uses a pre-
trained language model, our approach is fast to train and can be applied
to any vision backbone. Moreover, DeViL can create open-vocabulary
attribution maps corresponding to words or phrases even outside the
training scope of the vision model. We demonstrate that DeViL generates
textual descriptions relevant to the image content on CC3M, surpassing
previous lightweight captioning models and attribution maps, uncovering
the learned concepts of the vision backbone. Further, we analyze fine-
grained descriptions of layers as well as specific spatial locations and show
that DeViL outperforms the current state-of-the-art on the neuron-wise
descriptions of the MILANNOTATIONS dataset.

Keywords: Explainable AI · Vision-Language Models · Natural Lan-
guage Explanations · Open-vocabulary Saliency

1 Introduction

Despite the success of deep vision models, the lack of understanding of how they
arrive at their predictions inhibits their widespread adoption in safety-critical
fields such as medicine. To better understand arbitrary vision models, post-hoc
explanation methods play an important role because they allow inspection a
posteriori without any modifications to the architecture or loss function.
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One popular strategy to improve the interpretability of vision models are
visual attribution maps. Activation-based methods [46,34,36,43,9] take into ac-
count the features a vision model produced at a given layer for visualizing the
spatial attribution with respect to the network output. However, they are not
always reliable [1] and other explanation modalities exist. Natural language ex-
planations (NLEs) have been proposed in the context of vision-language models
to extend the language output for a given task with a fitting explanation [33],
such as for a VQA task. A less explored direction is directly explaining internal
features or neurons of neural networks through natural language [15]. Such ex-
planations would allow a wider reach of application, especially where users are
not expected to have expert knowledge and can more easily interpret textual
explanations than saliency maps.

In this work, we propose DeViL (Decoding Vision features into Language)
that can explain features of a vision model through natural language. By employ-
ing a general purpose language model, we inherit rich generalization properties,
allowing us to additionally perform open-vocabulary saliency analysis. DeViL
combines providing textual explanations of these visual features with highlight-
ing visual attributions spatially to extract diverse explanations that complement
each other. Thus, enabling non-experts to comprehend the network’s decision-
making process, diagnose potential issues in the model’s performance, and en-
hance user trust and accountability.

With DeViL, our key contributions are: i) generating spatial and layer-
wise natural language explanations for any off-the-shelf vision model, ii) open-
vocabulary saliency attributions coherent with textual explanations, and iii)
showing how dropout can be used to generalize from image-text pairs on a global
level to fine-grained network inspections. To the best of our knowledge, this is
the first work to combine these capabilities into a single model while requiring
short training times and using abundantly available captioning data instead of
explanation specific datasets.

2 Related Work

Inherently interpretable models. Apart from post-hoc explanation meth-
ods, inherently interpretable models try to modify the network architecture or
loss function to make the model more interpretable. For instance, induced align-
ment pressure on the weights during optimisation, either in a linear [10,7,5,6]
or non-linear manner [22,49], has been shown to produce more interpretable
models. While these methods produce more interpretable models, they require
adaptation and re-training of existing models and cannot always recover the
original task performance. With the increasing size of models, this is not always
a scalable solution. Post-hoc methods trade-off the guaranteed faithfulness of
the explanation with broader applicability.

Post-hoc saliency. Saliency attribution is most commonly produced
through perturbations [24,29], gradients [38], activations [18,43,46] or their com-
bination [34,9]. Class Activation Mapping (CAM) [46] and its successors, such
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as Grad-CAM [34] and Grad-CAM++ [9], are one of the most popular attribu-
tion methods that make use of network activations, similar to our approach, but
additionally use the gradients of the target class. We set ourselves apart from
these methods by introducing open-vocabulary saliency maps and also providing
directly related natural language explanations.

Natural Language Explanations. Another explanation alternative are
NLEs, which provide textual descriptions accompanying the prediction. The ap-
proaches are usually divided into predict-explain and explain-predict paradigms:
in the first, a language model is finetuned with features and predictions from
a pre-trained vision model [17,26], while in the latter a single model is jointly
trained to explain and predict [25,33,30]. While these provide a single NLE for
the whole image, Bau et al. [4] attempts to label individual highest activated
neurons in a network by correlating them with pixel-wise annotations. Building
upon that, Hernandez et al. [15] collect the MILANNOTATIONS datasets where
humans labeled sets of images that showed high activations for individual neu-
rons of different network architectures. By training a vision-language model on
this data, individual neurons of different layers can be described in natural lan-
guage. In contrast, DeViL can generate both types of NLEs (global and local),
without requiring a dataset of human annotated descriptions per neuron or layer.
Nonetheless, we show that when our model is trained on MILANNOTATIONS,
we obtain a higher correspondence with human descriptions.

Captioning Models. Image captioning models [27,31,40,48,16], on the other
hand, use large language models (LLMs) to generate free-form captions for
the input image. State-of-the-art in captioning is obtained by large-scale pre-
training and subsequently finetuning on target datasets [48,16]. On the other
hand, lightweight models such as ClipCap [27] perform competitively by rely-
ing on pre-trained vision and language models requiring significantly fewer GPU
hours to train. DeViL is similar to ClipCap in that both models use a translation
network between image features and the language model prompt. While ClipCap
is capable of generating high-quality captions for images, it cannot be directly
used to interpret a model’s internal representations. In contrast, by extracting
features from multiple layers of the vision model and incorporating dropout,
DeViL generalizes to more fine-grained descriptions and improves all captioning
metrics on CC3M [35].

3 DeViL Model

Given a pre-trained vision model g, our goal is to decode the features of several of
its L layers into natural language describing what these features encode. These
descriptions are specific to the network’s activations corresponding to an input
image. Let gl(x) denote the feature map of the lth-layer of g for input image
x with spatial size Hl × Wl. We propose DeViL, a network that is trained to
decode an individual feature vector gl(x)i,j of an arbitrary spatial location i, j
into a natural language description. Since DeViL is trained on top of features
from a frozen vision model g, we view it as a post-hoc explanation method,
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Fig. 1: DeViL architecture diagram: Given an input image x and a pre-trained
vision encoder with multiple layers (L), we concatenate the average pooling
embedding (gL(x)pooled) to learnable prefix tokens (size=10; as in [27]). A trans-
lation transformer f then projects prefix tokens p̂1, . . . , p̂n used to condition the
language model pLM to get the captions for the entire layer. During inference, we
can select individual feature gL(x)i,j for any arbitrary location i, j of the layer
and generate its respective NLE, together with open-vocabulary saliency.

that is able to reason about which concepts have been learned by the vision
model retrospectively. Figure 1 depicts an overview of the network architecture
of DeViL, which we describe in more detail in the following sub-sections.

3.1 Translating vision features into language

Our DeViL method is designed to be a lightweight model such that it can be
trained and applied to existing vision backbones without requiring a long training
time. Instead of training a language model, we make use of a pre-trained language
model with frozen weights to generate the natural language descriptions for
vision features. Specifically, the language model pLM(tk|t1, . . . , tk−1) is able to
predict the next token t from its tokenizer’s vocabulary given a sequence of
previous tokens as context. As shown in recent works [48,27], the text generation
of language models can be guided by conditioning the model on learned prefix
tokens instead of finetuning its weights.

We follow this approach and train only a translation network f that takes
image features gl(x)i,j and produces n prefix tokens p̂ = {p̂i}ni=1 that are used
to condition the language model pLM(tk|p̂1, . . . , p̂n, t1, . . . , tk−1) for generating a
description. The translation network uses a standard Transformer architecture.
As input, we concatenate the sequence of image features gl(x)i,j with a set of
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trained parameters for the initial prefix tokens p. From the output, we only keep
the transformed prefix tokens p̂ to pass on to the language model as prompt in
a causal language generation setting.

3.2 Learning to decode individual vision features

Obtaining fine-grained data on textual descriptions for neurons or activations
of the neural networks as done in [15] is costly at scale. Hence, we resort to
more commonly available text-image pairs in the form of a captioning dataset
to achieve the same goal. Since these image-text pairs relate the global image
content to a single sentence, we describe in the following how we can train
on these global relations, but evaluate our model on more fine-grained feature
locations across the layers of the vision model.

Given a vision model g, we first specify the layers we would like to decode. For
every forward pass of g, we extract the features gl(x) for every layer l in our set of
explained layers. At training time, we perform 2D global average pooling over the
spatial locations at each feature layer to obtain a single feature vector per layer
gl(x)pooled. After applying a linear projection onto the same dimensionality and
adding a positional embedding, the feature vectors are passed to the translation
network f as a sequence. Depending on how many layers are being explained,
the sequence length for f varies, i.e., it increases by one for each layer that is
explained. At inference time, instead of pooling the visual features, we can select
a specific location we would like to explain and only pass that particular feature
vector gl(x)i,j to f .

To train our translation network, we optimize the standard causal language
modelling task of predicting the next token given previous tokens. In our context,
the language model is conditioned on the image features through the translation
network. Thus, our loss is L = log pLM(t|f(g(x))) =

∑
k log pLM(tk|p̂, {ti}k−1

i=1 )
with trainable parameters only in the translation network f . Once trained,
DeViL can decode vision features into natural language by conditioning the lan-
guage model on a vision feature vector and generating a sentence. In practice,
we greedily choose the most probable next word with argmax.

3.3 Generalization through dropout

The global average pooling at test time is required because we do not have more
fine-grained data to train on. However, it creates a discrepancy between training
and inference time. To overcome this issue, we introduce two dropout opera-
tions. Firstly, we randomly dropout spatial locations i, j of gl(x) before applying
average pooling to obtain gl(x)pooled. As a result, our translation network ob-
serves a larger space of image features that better cover the full distribution of
a vision layer’s features. Secondly, we randomly subselect the layers from which
the translation network f obtains the pooled features. This way, the translation
network sometimes receives features only from individual layers during training
time. This is crucial because, at inference time, we would like to decode a specific
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feature of an individual vision layer so this dropout ensures this input configu-
ration is seen during training. Moreover, it allows to train a single network per
vision model instead of one per layer.

In contrast to dropout as proposed by [37], we do not remove features
element-wise but always remove a full vector to simulate a spatial location or full
layer being missing from the input. Hence, we also do not require to perform any
rescaling of the features but rather mask the complete vectors from subsequent
operations.

3.4 Open-vocabulary saliency with DeViL

DeViL can be used to obtain the probability of a given word or a phrase
conditioned on vision features at layer l and location i, j by evaluating
pLM(tquery|f(gl(x)i,j)). When passing overall features from a layer of interest,
we obtain a likelihood of the query for every spatial location that we can visu-
alize as a saliency map. By using a general purpose language model, there are
no constraints on the query such that we can obtain saliency maps on concepts
that lie outside the original training scope of the vision model. This is useful for
seeing whether the vision features encode information about related concepts
due to their correlation with training data or obtained as a side-effect.

4 Experiments

We evaluate DeViL on both its natural language and saliency generation capabil-
ities. DeViL is trained on the CC3M [35] dataset. While our goal is to generalize
to more fine-grained descriptions of vision features, DeViL can still be used as
a captioning model. Thus, we start by evaluating image captioning on CC3M,
before discussing explanations of vision features obtained through DeViL. For
fine-grained analysis, we report both qualitative as well as quantitative results
on fine-grained neuron descriptions by training and evaluating on the MILAN-
NOTATIONS dataset [15]. Lastly, we evaluate both NLEs and saliency obtained
through DeViL across different layers to show its generalization capabilities. As
we focus on explaining the vision backbone instead of producing captions, all
images used for qualitative analysis come from sources outside CC3M, such as
ImageNet [11], Places365 [47], and COCO [21]. Details about the DeViL archi-
tecture and training details can be found in the supplementary.

4.1 Evaluating feature descriptions through image captioning

Dataset. We use the official train-validation split of CC3M [35], consisting of
3M image-caption pairs collected from the web. We chose this dataset because
it is sufficiently large to cover a large variety in both the vision and language
modalities. Its successor CC12M [8] is less focused on high conceptual relevance,
and more noisy in caption quality, making CC3M more suitable for tasks that
require strong semantic alignment between text and image.
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Method Vision Backbone LM B4 ↑ M ↑ RL ↑ C ↑ S ↑ #Params (M) ↓

DeViL

IN-ResNet50 OPT 5.851 9.572 23.92 65.73 15.23 88
CLIP-ResNet50 OPT 6.770 10.68 25.90 78.41 17.38 88
CLIP-ViT OPT 7.506 11.22 26.82 86.29 18.37 88
CLIP-ViT GPT2 6.349 10.55 25.70 76.55 17.81 40

ClipCap [27] CLIP-ViT GPT2 - - 25.12 71.82 16.07 43
VLP [48] - - 24.35 77.57 16.59 115
LEMON [16] 10.1 12.1 - 104.4 19.0 196.7

Table 1: Image captioning results on CC3M [35] with different pre-trained vision
backbones and language models, and a comparison with state-of-the-art cap-
tioning models, either fully [48,16] or partially-finetuned [27]. We report stan-
dard captioning metrics, where higher is better. IN-ResNet50: ImageNet [11]
pre-trained ResNet50 [14]. CLIP-ResNet50/ViT: ResNet50/ViT versions of the
CLIP [31] vision encoder trained on the CLIP dataset.

Baselines. Although our goal is to translate latent representations of pre-
trained vision models into language, DeViL can still be used to obtain full image
descriptions. Hence, we evaluate DeViL generated sentences with standard cap-
tioning metrics and compare against captioning methods [27,48,16]. ClipCap [27]
is a lightweight model that combines the CLIP vision model with a pre-trained
language model. Similar to our approach, ClipCap only trains a translation net-
work to keep the training cost low. Both UnifiedVLP [48] and LEMON [16] are
large-scale models pre-trained on several datasets not limited to captioning and
subsequently finetuned. Thus, they surpass lightweight models such as ClipCap
and DeViL, but require a lot of resources to train.

Results. We present our results on common language-based metrics:
BLEU@4 [28], METEOR [12], ROUGE-L [20], CIDEr [42], and SPICE [3]. We
consider ResNet50 [14] trained on ImageNet and CLIP [31] in both its ResNet50
and ViT variants as our vision backbones.

We report image captioning results in Table 1. Between vision backbones,
we observe that CLIP-ViT performs better than its ResNet50 counterpart and
ResNet50 trained on ImageNet, which is not surprising given CLIP’s contrastive
vision-language pre-training. Since the vision encoder of CLIP has in the past
depicted strong zero-shot capabilities on a variety of tasks, we would expect it
also to have a large coverage of visual concepts when we explain their features.

When using the CLIP-ViT backbone, we further ablate the relevance of the
pre-trained language model. We make use of OPT-125M [44] and GPT2 [32]
in our pipeline. With CLIP-ViT-B-32 as the vision backbone and OPT as the
language model, we obtain our best scores surpassing ClipCap on all by a big
margin, e.g. a CIDEr of 86.29 vs. 71.82. Even when using GPT2 and the same
translation network architecture as ClipCap, we perform better across the board
while using fewer parameters (40M vs. 43M). This is due to our model changes in
using multiple layers of the vision backbone and the introduction of both feature-
level and layer-level dropouts. Compared to large-scale captioning models that
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Token Feature
Layer Dropout Dropout B4 ↑ M ↑ RL ↑ C ↑ S ↑

single
0.3038 3.435 11.76 4.729 1.962

✓ 6.442 10.34 25.14 73.73 16.86
✓ ✓ 6.623 10.49 25.50 75.88 17.11

all
7.101 11.16 26.62 82.59 18.54

✓ 7.211 11.09 26.70 83.32 18.48
✓ ✓ 7.506 11.22 26.82 86.29 18.37

Table 2: Ablating our dropout when evaluated using vision features from all
layers or only the very last layer (single) of CLIP-ViT.

require more resources, we still perform better than UnifiedVLP on all metrics
despite it requiring 1200h of training on a V100 GPU. In comparison, ClipCap
reports 72h of training on GTX1080, while DeViL requires 24h of training on an
A100. LEMON [16] still surpasses our lightweight model as the state-of-the-art
model on captioning. Required training resources for LEMON are not reported.

Ablations. We ablate the proposed token and feature dropouts in Table 2 in
terms of captioning metrics for the CLIP-ViT model. This table shows 3 different
models trained with incremental combinations of both dropouts. While each
DeViL model is trained to explain multiple vision backbone layers, we evaluate
them in two scenarios: using vision features from all layers of the vision backbone
it was trained with (all) and when using only the last layer (single). This ablation
study confirms that dropout is essential for producing image-relevant captions for
individual layers at inference time. Since the model without token dropout has
never seen a single layer being passed to the translation network, it performs
poorly in this out-of-distribution scenario making CIDEr drop from 75.88 to
4.729. Feature dropout is less essential, but further improves captioning scores
and improves generalization. When we compare results on using all layers rather
than just using one, we see an improvement in all scores, e.g. CIDEr increases
from 75.88 to 86.29. This suggests that complementary information is encoded in
the different layers, making it reasonable to assume we can obtain layer-specific
explanations even when training on caption data.

Overall, these results show that with our dropout methods, we can train
on several layers at once and perform an evaluation on individual layers by
themselves, while also avoiding the need to train one model for each layer we
might want to explain later on.

4.2 MILAN: explaining local visual features

Since DeViL was designed first and foremost for localized feature inspection in
natural language, we strive to compare our method more directly on an explain-
ability task, and especially on one such task at the local feature level. Thus,
we also train DeViL on MILANNOTATIONS [15], a dataset of over 50k human
descriptions of sets of image regions obtained from the top neuron activating
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ResNet-ImageNet layer3-298

Human annotation: areas that look like keys on a 
keyboard
MILAN: Number pads
DeViL: the back of a phone, a computer, a phone

Human annotation: long, thin objects
MILAN: long, slender objects
DeViL: animals and chains

ResNet-ImageNet layer4-1335 AlexNet-Places conv3-196

Human annotation: surfaces that show a pattern 
composed of lines
MILAN: grates
DeViL: buildings and windows

Fig. 2: Qualitative results on MILANNOTATIONS [15] and comparison with the
MILAN [15] model.

images of several known models like ResNet [14] or AlexNet [19]. For each base
model, the authors collect descriptions for the top 15 activated images of each
neuron in the network. Each image is masked by its corresponding activation
mask, highlighting only the regions for which the corresponding neuron fired.

Method B4 ↑ M ↑ RL ↑ C ↑ S ↑ BS ↑
MILAN [15] - - - - - 0.362
ClipCap [27] 3.99 9.62 27.0 25.1 10.8 0.381
DeViL 6.28 11.3 30.6 33.7 13.3 0.382

Table 3: Evaluating MILAN, ClipCap
and DeViL on MILANNOTATIONS.

We compare with ClipCap and the
MILAN model [15] trained on MI-
LANNOTATIONS [15]. Although our
model was designed to work with
layer-wise feature maps for a single im-
age and not at the neuron level, we
adapt DeViL by pooling over the 15
masked images given for each neuron.
We report the NLP metrics including BERTScore [45] results in Table 3. The
results are averaged over several generalization experiments proposed by [15].
We report a complete comparison in terms of BERTScore of all 13 experiments
in the supplementary.

The average BERTScore across scenarios is 0.362, 0.381 and 0.382 for MI-
LAN, ClipCap and DeViL, respectively. The margins between all models are
small as BERTScore is very sensitive to small differences that can still indicate
a reliable ranking [43]. Considering all other language metrics, the difference be-
tween ClipCap and DeViL is more pronounced and DeViL outperforms ClipCap
consistently. A qualitative comparison with MILAN [15] can be seen in Figure 2.
We refer the reader to examples like “animals and chains” and “building and
windows”. Both quantitative and qualitative results validate DeViL’s general-
ization ability and its primary intended goal: to faithfully decode localized vision
features into natural language.

4.3 Diverse layer-wise explanations of vision features

Deep neural networks learn to extract meaningful patterns from input data by
progressively building up a hierarchy of features. The lower layers tend to detect
simple patterns like edges and curves, while the higher layers learn to recognize
more complex and abstract concepts [39,43,2,14]. We verify a similar trend in
the descriptions generated by DeViL. We generate descriptions for each spatial
location of the feature map at layer l and produce saliency maps to measure the
spatial support of the main subject in the sentence generated at a single location.
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            L49: zebra               L39: animal                L21: pattern

             L49: church               L39: building            L21: bricks

L49: close up of a zebra
L39: a zebra in the black and white 
striped pattern
L21: abstract geometric pattern 
with a black and white stripe.

L49: a vintage school bus on a 
white background
L39: a yellow yellow cab with a red 
headlight
L21: a set of squares with a circle

                  L49: school bus      L39: headlight              L21: square

L49: church in the village
L39: a view of the building
L21: the old brick wall is a great 
place to store your items.

Fig. 3: Generated descriptions at different layers of the CLIP-ResNet50 backbone
(L49, L39 & L21) for the location marked with a green dot and corresponding
saliency maps for the relevant words in them.

Our model assigns a probability score to a textual query being generated based
on its relevance to the visual features. This score can then be visualized as
a heatmap, with higher scores corresponding to areas of the image where the
vision model encoded the textual concept.

Qualitative. Figure 3 corresponds to the output generated by the CLIP-
ResNet50 model for layers 21, 39, and 49. The green dot in the image shows the
location for which the description has been generated. The generated descrip-
tions showcase the aforementioned hierarchy, with lower layers mentioning lower
level features like colors (e.g. “red headlight”) and shapes (e.g. “squares with a
circle”) and higher layers mentioning objects (e.g. progression from “building” to
“church”). The saliency maps also validate the spatial location of these words,
e.g. higher saliency scores for “zebra” at L49, “animal” at L39, and “pattern” at
L21.

From simple to rich language descriptions. To quantify how well DeViL
captures the differences of what specific vision layers encode, we analyze the
generated text descriptions across layers. Specifically, we obtain a single text
description per layer by averaging the vision features for each layer and decode
them individually with DeViL. In Table 4, we take a look at the properties
of the language generated by DeViL on CC3M. As measured by the CIDEr
score, we observe that the text similarity to human captions increases with later
layers as more semantically meaningful embeddings are produced by the vision
model. We also see that the language shifts from using many adjectives in earlier
layers to more verbs and a more comprehensive vocabulary in higher layers. This
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indicates a shift from describing simple concepts with a limited set of attributes
to richer descriptions that also describe relations and actions between objects in
the image. In Figure 4, we show the saliency for the same word across different
layers of CLIP-ResNet50. The top layer encodes “Zebra”, but not “Pattern”,
and conversely for a lower layer. These insights can help us better understand
intermediate features of a pre-trained model and assist in choosing the right
features for a downstream task.

Zebra Pattern Church Bricks

L49

L21

Fig. 4: Semantics are encoded in dif-
ferent layers, CLIP-ResNet50 model.

Model Layer Adj Verbs #Uniq. CIDEr
(%) (%) Words ↑

CLIP-ViT 9 6.37 6.30 4790 61.6
CLIP-ViT 6 7.60 5.78 4115 44.1
CLIP-ViT 3 8.04 5.24 2554 20.2
CLIP-ResNet50 49 6.30 6.66 5228 71.2
CLIP-ResNet50 39 6.69 6.43 4395 54.1
CLIP-ResNet50 21 6.89 5.90 3374 34.6

Table 4: Per-layer statistics of adjec-
tives, verbs, # of unique words.

Quantifying spatial and layer coherence. We want to further analyze
how well the spatially localized descriptions generated by DeViL capture the
content of the underlying image patches. Intuitively, earlier layers encode local
information of a smaller underlying patch, while later layers can encode more
global information. To test this, we create center crops of sizes 32x32, 64x64,
and 128x128 along the full image size of 224x224 and compare their similarity
to DeViL descriptions of the vision feature closest to the center in each layer’s
feature map. We use CLIP-ResNet50 to embed the cropped images as well as
DeViL descriptions and compare their similarities. Figure 6 plots which crop
size is most similar with the generated text. We observe that smaller patches
have much higher similarity with earlier layer descriptions, and conversely bigger
patches with later layers. Descriptions of L21 best match 64x64 patches and this
distribution shift progressively to L49 fitting best to the full image content.
These results validate that DeViL exposes what the vision model encodes both
in lower layers describing the content of local patches and global concepts in
higher layers.

4.4 Inspecting different vision models through saliency

Since DeViL incorporates an LLM, it has the ability to produce saliency maps
for any word, not being limited by the closed-set of classes of a given dataset.
Figure 5 presents a comparison of different vision backbones in terms of saliency
maps for different words. The different models can distinguish “cat” and “dog”,
but also identify both as “animal”. Interestingly, since CLIP-based models are
trained with not only images but also text, they can identify the written word
“pizza” on the bottom-most image, while an ImageNet trained ResNet50 cannot.
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Animal Cat Dog Goldfish Pirate Apple Pizza

IN-RN50

CLIP-RN50

CLIP-ViT

Original

Fig. 5: Open-vocabulary saliency maps for different backbones with the final
layer. For CLIP-ViT we use the penultimate layer.

Similarly, the word “pirate”, written on a stone, is also identified by CLIP-based
models for the aquarium image. These failure cases of the CLIP model have
been discovered independently (i.e. typography attack [13]) and the explanations
of our DeViL model expose these as well, highlighting its faithfulness to the
vision model. Obtaining saliency maps for open-vocabulary words that did not
appear in a model’s training data such as the supercategory “animal” or the
class “pirate” is a novel contribution of our method. It also allows a more direct
comparison with models of different pre-training tasks such as CLIP, which is
not possible with methods that rely on the model’s output to be the same for
direct comparisons. More qualitative results can be found in the supplementary
material.
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Fig. 6: Frequency of most similar
patch size for a given DeViL descrip-
tion (L21, L39, L49, All) and human
caption (GT) using CLIP-ResNet50.

Layer Metric Grad-CAM [34] DeViL (CC3M)

L49 Del. 0.342 0.466
Ins. 0.763 0.697

L39 Del. 0.465 0.494
Ins. 0.677 0.661

L21 Del. 0.405 0.484
Ins. 0.593 0.635

Table 5: Deletion (↓) and inser-
tion (↑) comparison between Grad-
CAM [34] and DeViL ResNet50 at
different layers (L49, L39, and L21).

We also compare our saliency maps quantitatively with Grad-CAM [34],
which proposes interpreting a neural network via the gradients for a target class
flowing through a given layer. Results are presented in Table 5 for 3 layers of the
ResNet50 model (L49, L39, and L11). We report commonly used deletion (Del.)
and insertion (Ins.) metrics [29]. The Del.(Ins.) metric measures the drop(rise)
in the probability of a class as relevant pixels given by the saliency map are
gradually removed(inserted) from the image. Thus, lower(higher) is better for
Del.(Ins.). Although we are unable to outperform Grad-CAM, the latter uses
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gradients, which provide more information than just activations alone. Further-
more, Grad-CAM is specialized in the network’s output classes, while DeViL can
perform open-vocabulary saliency. An interesting future research direction is to
improve and align open-vocabulary saliency with existing approaches.

5 Conclusion

The ability to interpret deep learning models’ predictions is crucial for their
effective deployment in real-world applications. The visualizations of intermedi-
ate feature maps have been shown to be a promising approach for improving
model interpretability, but understanding these feature maps often requires fur-
ther analysis. Our proposed DeViL approach for explaining feature maps through
natural language is unique as it generates textual descriptions for individual fea-
tures, and can also produce open-vocabulary saliency attributions. We evaluate
the efficacy of our model’s language generations on CC3M and MILANNOTA-
TIONS, outperforming competing models, and show extensive qualitative results
validating that our open-vocabulary saliency exposes which concepts are under-
stood by each of the model’s layers.
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