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Abstract. The reliability of supervised machine learning systems de-
pends on the accuracy and availability of ground truth labels. However,
the process of human annotation, being prone to error, introduces the
potential for noisy labels, which can impede the practicality of these
systems. While training with noisy labels is a significant consideration,
the reliability of test data is also crucial to ascertain the dependability
of the results. A common approach to addressing this issue is repeated
labeling, where multiple annotators label the same example, and their
labels are combined to provide a better estimate of the true label. In
this paper, we propose a novel localization algorithm that adapts well-
established ground truth estimation methods for object detection and
instance segmentation tasks. The key innovation of our method lies in
its ability to transform combined localization and classification tasks into
classification-only problems, thus enabling the application of techniques
such as Expectation-Maximization (EM) or Majority Voting (MJV). Al-
though our main focus is the aggregation of unique ground truth for
test data, our algorithm also shows superior performance during train-
ing on the TexBiG dataset, surpassing both noisy label training and label
aggregation using Weighted Boxes Fusion (WBF). Our experiments in-
dicate that the benefits of repeated labels emerge under specific dataset
and annotation configurations. The key factors appear to be (1) dataset
complexity, the (2) annotator consistency, and (3) the given annotation
budget constraints.

Keywords: Object Detection · Instance Segmentation · Robust Learn-
ing.

1 Introduction

Data-driven machine learning systems are expected to operate effectively even
under "difficult" and unforeseen circumstances. Consider safety-relevant domains
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Fig. 1. Comparison between different ground truth aggregation methods, exemplary on
the VinDr-CXR dataset [23]. Left: the original image with the repeated labels indicated
by the different line types. Right: the four smaller images from top left to bottom right
are, MJV+X, LAEM+µ, LAEM+Y and WBF.

such as autonomous driving, medical diagnosis, or structural health monitoring,
where system failure sets lives at risk. Robust systems ´ those capable of reliable
operation in unseen situations ´ may encounter several challenges, including
domain shifts [25,36,16,5], adversarial attacks [43,42], degrading image quality
[21,7,41] and noisy or uncertain labels [18,9,10,37]. Past studies [33] indicate
that noisy labels can cause more harm than the three aforementioned sources of
input noise. Given this context, our study concentrates on addressing the issue of
noisy labels, specifically within noisy test data. Without a unique ground truth,
evaluation is unattainable. Therefore, to enhance robustness against label noise,
it will be pivotal to first devise methods tailored towards annotation aggregation,
which lays the groundwork for potential future integration with multi-annotator
learning methods.

The creation of annotated data for supervised learning is a costly endeavor,
particularly in cases where experts such as medical professionals or domain ex-
perts are needed to annotate the data. To mitigate this issue, crowd-sourcing
has emerged as a cost-effective means of generating large datasets, albeit with
the disadvantage of potentially lower quality annotations that may contain label
noise [30,44,47]. Although the reduced costs of crowd-sourced annotations often
justifies their use, deep neural networks have the capacity to memorize noisy la-
bels as special cases, leading to a declining performance and overfitting towards
the noisy labeled data [44]. Notably, even expert annotated data is susceptible
to label noise, given the difficulty of the data to annotate. A survey by Song et.
al.[33] revealed that the number of corrupt labels in real-world datasets ranges
between 8.0% to 38.5%. The authors demonstrate that reducing label noise and
creating cleaned data can improve the accuracy of models. To address the is-
sue of noisy labels, an approach known as “repeated-labeling” has been proposed.
Repeated-labeling means to obtain annotations from multiple annotators/coders
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for the same data entry, such as an image. More specifically: For a set of images
txiu

N
i“1 multiple annotators create noisy labels tỹri u

r“1,...,R
i“1,...,N , with ỹri being the

label assigned from annotator r to image xi, but without a ground truth label
tyiui“1,...,N [34].

Input Localization Aware Expectation Maximization

Repeated Labels

Model Training
1) Localization 2) Classification

Input Output

Fig. 2. Left: Original input image featuring three separate annotations by distinct
annotators. Center: Application of the LAEM aggregation method to the three anno-
tations, yielding an approximate ground truth. Right: Aggregated ground truth utilized
during the training process.

Methods for mitigating the negative effect of label noise via repeated label-
ing can be divided into two categories [18,34]: (a) two-stage approaches [39,8]
and (b) one-stage or simultaneous approaches [15,12,11]. Two-stage approaches
aim to approximate the ground truth prior to training, a process known as
ground truth estimation or ground truth inference [45], as depicted in Figure 2;
a straightforward approach is to compute a majority vote. Following label ag-
gregation, the model is trained in a regular fashion. Two-stage approaches offer
the benefit of being compatible with commonly used model architectures. On
the other hand, simultaneous approaches attempt to integrate repeated labels
directly into the training process. In any case, the primary objective of both
strategies is to achieve robust and accurate results by leveraging the repeated
labeled data to the fullest extent possible. Doing so is crucial to justify the ad-
ditional annotation efforts. Lastly, to enable the use of established performance
metrics, such as those employed in the COCO object detection dataset (mAP)
[20], a ground truth estimation step is essential for the validation and test sets.
While simultaneous approaches can more effectively utilize repeated labels, they
are not intended to execute the necessary aggregation step required to gener-
ate the unique ground truth estimate [34]. Consequently, reliable approximation
methods are indispensable for evaluation purposes.

Object detection and instance segmentation require both localization and
classification, which means that existing methods for repeated labels that are
used for classification tasks such as image classification or named entity recogni-
tion are not applicable [28]. That is, the available selection of ground truth infer-
ence methods is limited. Furthermore, the creation of bounding box or polygonal
annotations is expensive [10] and reduces the number of datasets with repeated
labels available for evaluating ground truth inference methods [35,23]. However,
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we deliberately avoid using synthetic data and focus on real datasets. Our con-
tributions are as follows:

1. We propose a localization algorithm that enables the use of existing ground
truth estimation methods such as majority voting or expectation maximiza-
tion for instance-based recognition tasks and evaluate it extensively with
existing methods [32,18].

2. We introduce a comparative analysis of ground truth inference methods that
highlights their properties and limits.

3. We conduct ablation studies to analyze the costs associated with creating re-
peated annotations, and what to do when the amount of available annotated
data is limited.

4. We introduce an extension for the TexBiG dataset [35] in the form of a
test subset, wherein each of the 200 test images has been annotated by five
expert annotators. Utilizing our aggregation method, we establish a unique
approximation of the ground truth, which will serve as the unknown reference
standard on an evaluation server. This approach allows the TexBiG dataset
to be used for evaluation of robust learning methods addressing the challenge
of noisy labels.

Once released, the link to the evaluation server will be posted on the GitHub
repository where the code is hosted: https://github.com/Madave94/gtiod.

2 Related Work

To approximate the ground truth, estimation methods make assumptions about
the data and task properties as well as the annotation process. Majority Voting
(MJV) [14,29,26] assumes correct labels for the majority of training samples and
aggregates the labels accordingly:

ỹi “

#

1 if p1{Rq
řR

r “ yri ą 0.5

0 if p1{Rq
řR

r “ yri ă 0.5
(1)

In case of a tie, the label is chosen randomly between the tied ones or selected by a
super-annotator. On data with high inter-annotator agreement, majority voting
can be a straightforward approach to obtain ground truth estimates reasonable
quality.

Numerous methods for inferring ground truth rely on the Expectation-Maxi-
mization (EM) approach, first introduced by Dawid and Skene [8]. This approach
estimates annotator confidence and integrates it into a weighted voting procedure
for determining the true label. By considering annotator performance, these
methods address the limitations of majority voting, thereby avoiding potential
outliers. One notable advancement in this area is the GLAD [39] method, which
not only attempts to identify the most probable class but also assesses image
difficulty, additional to the annotator confidence. It should be noted, however,
that this approach is limited to binary classification tasks [31].

https://github.com/Madave94/gtiod
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In addition to classification tasks, pixel-wise classification (semantic segmen-
tation) also has existing ground truth inference methods, such as STAPLE [38],
SIMPLE [17], and COLLATE [1]. Recent developments in this field have led to
approaches that incorporate data difficulty into the estimation process, as seen
in a newly developed simultaneous method [11]. Although there are numerous
variations of ground truth estimation methods for classification and segmenta-
tion tasks, this discussion will focus on methods applicable to object detection
and instance segmentation, rather than diving deeper into this area.

For instance-based recognition tasks like object detection and instance seg-
mentation, there is an additional issue to consider – the localization step. During
training, methods consisting of a combination of thresholds and non-maximum
suppression are used to solve the localization problem and then focus on clas-
sification accuracy. While this may work during training, repeated labeling is
likely to have more than just a prediction and ground truth pair to match, since
multiple annotators might have created multiple labels. Hence, existing methods
are not applicable. An existing approach to aggregate annotations for object de-
tection is called Weighted Boxes Fusion (WBF) [32,18], which was used for the
VinDr-CXR dataset [23]. WBF focuses on the weighted aggregation within each
class, ignoring inter-class disagreements and also not discarding any annotations
even with low agreement. This is beneficial in cases where missing a possible
case is far more severe then finding too many, such as a task that requires high
recall. Apart from this single existing instance-based recognition approach, we
are not aware of any other aggregation methods for object detection or instance
segmentation.

3 Method

In the following section we introduce a novel adaptation of the EM algorithm,
localization-aware expectation maximization (LAEM), for instance-based recog-
nition tasks. The same localization algorithm can also be used with majority
voting, which therefore functions as a baseline. Additionally, we expand the
existing weighted boxes fusion technique to encompass weighted mask fusion,
which enables its use in instance segmentation and facilitates benchmarking on
a broader range of datasets. As extending weighted boxes fusion is not our core
contribution it can be found in Appendix 1.

3.1 Localization-Aware Expectation-Maximization

Our novel approach adds a localization stage to existing methods like majority
voting and expectation maximization, enabling the use of these established meth-
ods for instance-based recognition tasks. Thus, the proposed label aggregation
process consists of two stages: (1) localization-stage and (2) classification-stage.
Assuming that R annotators have created noisy instance-based labels ỹrij for
image xi. Subscript j “ 0, ...,Mr refers to the single instances annotated by
annotator r for image xi. Mr can be zero if no instances were labeled by r.
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Each instance contains a class c P C denoted ỹrijc. Furthermore, ỹrijb refers to the
respective bounding box and ỹrijs to the optional pixel-wise segmentation mask.

Algorithm 1 Outline of the localization algorithm used for LAEM
Require:

X “ txiui“1,...,N Ź Set of images
Ỹ “ tỸiui“1,...,N Ź Set of noisy labels per image
S “ tSiui“1,...,N Ź Set of annotators per image
θ Ź IoU threshold
for i P X do Ź Loop over images

Ỹi “ tỹ1
i1, ỹ

1
i2, . . . , ỹ

1
iM1

, ỹ2
i1, ỹ

2
i2, . . . , ỹ

2
iM2

, . . . , ỹR
i1, ỹ

R
i2, . . . , ỹ

R
iMR

u

Ỹ LAEM
i “ H

Q = tUk|Uk P PpSiq ^ |Uk| ě |Uk`1| ^ r|Si|{2s ď |Uk|u Ź Ordered set of annotator
combinations

for U P Q do Ź Loop over annotator combinations
L = tỸ

k1
i: ˆ ¨ ¨ ¨ ˆ Ỹ kn

i: |k1, . . . , kn P U ^ n “ |U |u Ź Possible combinations of labels
F “ tuk|uk P L ^ θ ď IoUpukq ^ IoUpukq ě IoUpuk`1qu Ź Filtered and ordered L
for k P N do Ź Loop over label combinations

K “ tk1, k2, . . . , knu

if K X Ỹi “ H then Ź Check for label availability
Ỹi “ ỸizK Ź Remove labels from available labels
Ỹ LAEM
i “ Ỹ LAEM

i Y aggregatepKq Ź Add aggregated label to accepted labels
end if

end for
end for

end for

Algorithm 1 outlines the LAEM approach. The algorithm requires image set
X, a set of noisy labels Ỹ , a set of annotators S, and a threshold θ. Looping over
the images of the dataset, the power set PpSq over the annotators is computed.
Subsets containing less than half the number of annotators are removed and a
descending order is enforced onto the set. It subsequently iterates through the
remaining ordered subsets of annotators and computes the Cartesian product
between the respective annotators. Each tuple is then ordered and filtered ac-
cording to threshold θ based on the intersection over union in its generalized
form:

IoU “

ŞR
r“1 ỹ

r
ijb

ŤR
r“1 ỹ

r
ijb

(2)

The remaining set of tuples ordered by descending IoU forms the set of candi-
date solutions F . In case all labels from a candidate tuple are still available, they
are aggregated according to an aggregation function and added to the inferred
solutions Ỹ LAEM

i . The aggregation function comprises two steps: (1) all classes
contained in the original tuple ỹrijc are appended to a list serving as input for
expectation maximization or majority voting and (2) the areas of the different
candidates ỹrijb are combined according to the union, intersection, or average
area of all boxes involved. The average operation is based on the WBF algo-
rithm [32] with uniform weights. If available, the same procedure (for details
cf. Appendix 1) is applied to the segmentation masks ỹrijs. This concludes the
localization stage. In the subsequent classification-stage existing ground truth
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inference methods can be applied such as majority voting or expectation maxi-
mization [8].

3.2 Algorithmic Design Choices

Our algorithm is designed in a divide-and-conquer manner. Firstly, we prioritize
localization, effectively reducing the problem to a classification task for each
matched instance after localization. This strategy consequently facilitates the
application of established methods for ground truth inference developed in other
fields. We always prefer a localization match with more annotators to maximize
consensus. If a localization match involving all available annotators cannot be
found given the threshold value θ, we ensure successive reduction to potentially
prefer the next largest number of annotators. This approach first guarantees
localization quality, and only upon establishing matched areas based on their
localizations do we aggregate the classes. The algorithm is parameterized by the
threshold value θ, which can be adjusted to enforce stricter localization quality
and also control the order in which instances are matched. Though this heuristic
solution may not provide an optimal outcome for larger problem sizes (e.g.,
numerous instances on a single image), when an image exhibits high agreement
among annotators, a consensus area can be aggregated, and the class of this area
can be unambiguously determined.

One advantage of the Expectation-Maximization (EM) approach is that as-
signment is unambiguous. The confidence calculated during the EM algorithm
serves as a tie-breaker, a benefit not present with Majority Voting (MJV). Fur-
thermore, fitting the EM algorithm is efficient; following localization matching,
no further areas are calculated, and only the solutions Ỹ LAEM

i are considered
along with their classes.

While localization fusion functions, such as union or intersection, are available
and applicable for training data, the intended use for test data within the context
of LAEM (Localization-Aware Expectation-Maximization) primarily involves the
averaging fusion function. This approach enables a balanced aggregation of areas
across different annotators. Additionally, this method is also utilized to aggregate
test data as required for the TexBiG dataset [35].

3.3 Comparative Analysis

In Table 1, we present a comparative analysis of the four available ground truth
inference methods for instance-based recognition tasks, distinguished by their re-
spective characteristics and properties. Each method is described based on eight
distinct features relevant to ground truth estimation methods. A noteworthy
difference between LAEM and MJV, as compared to WBF and its adaptation
(detailed in Appendix 2), is the handling of instances that lack consensus among
annotators. Figure 1 and Appendix 3 illustrates the aggregation processes of
MJV, LAEM, and WBF on a few specific images, serving as practical examples.
This illustrations reveal that MJV and LAEM tend to find consensus instances,
resulting in a final image that appears as if a single annotator has labelled the
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Methods LAEM MJV WBF WBF+EM

Assignment
1) Localization
2) Classification

1) Localization
2) Classification

Localization
only

Localization
only

Low agreement Discard annotation Discard
annotation

Keep
annotation

Keep
annotation

Edge cases Use confidence Randomized ´ ´

Localization fusion
Union / average /

intersection
Union / average /

intersection
Averaging

Weighted
averaging

Annotator confidence ✓ ˆ ˆ ✓

Handling missing data ✓ ✓ ✓ ✓

Dataset characteristic Balanced Precision
oriented

Recall oriented Recall oriented

Data dependence ˆ ˆ ˆ ˆ

Table 1. Comparison table for the characteristics and properties of the different ground
truth inference methods. MJV and LAEM both use the novel localization algorithm.

image. In contrast, the WBF image is relatively cluttered with overlapping in-
stances. This discrepancy arises because WBF merges areas of the same class
that significantly overlap but does not discard any annotation. This is also the
case, for instances where two annotators found the same instance area but dis-
agreed on the class, resulting in more instances overall. Although this property
might be beneficial for a high-recall scenario ´ where missing an instance is more
detrimental than detecting multiple false positives ´ it is not ideal for many ap-
plications. It’s important to note that none of the current methods incorporate
data dependence, a feature described in several state-of-the-art ground truth
estimation methods for semantic segmentation [17,38,1].

4 Experimental Results

In our preliminary experiment, we scrutinized the influence of annotation budget
size by exploring scenarios in which repeated labels might be preferred over
single labels. This ablation study was designed to determine the optimal use of
a restricted annotation budget, i.e., whether it is more beneficial to train with a
larger volume of noisy labels or a reduced set of refined labels. This experimental
analysis was conducted using two separate datasets.

In our subsequent investigation, we assessed the effect of annotator selection
on model performance by deliberately excluding certain annotators from the
labeling process. This enabled us to emulate the potential impact of annotator
selection on model performance and to probe the influence of proficient and
suboptimal annotators on model output.

Our final experiment, which is detailed in Appendix 2, was actually conducted
first since it influenced the choice of the aggregation method used for the training
data. However, this experiment is not the main focus of this publication.
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4.1 Set-Up

To the best of our knowledge, there are only two datasets available that contain
repeated labels for object detection and instance segmentation, respectively: the
VinDr-CXR [23,18] dataset and the TexBiG [35] dataset. We focus solely on
these two datasets and do not make use of any synthetic data.

VinDr-CXR dataset. This dataset comprises 15,000 training and 3,000
test chest X-ray images, each of which was annotated by three annotators and
five annotators, respectively. With a total of 36,096 instances in the training
dataset, the dataset can be considered sparsely annotated, with in average 0.8
instances per image1. The dataset consists of 14 different classes that were anno-
tated by 17 radiologists [22]. Using the agreement evaluation method presented
in [35] describing the data quality, the K-α (Krippendorff’s alpha) is 0.79. How-
ever, since only 29.3% of the images in the dataset contains any annotations
at all, another K-α was calculated for this reduced subset, resulting in a K-α
value of 0.29. This indicates that while annotators largely agree in cases where
no anomaly is present, there is significant disagreement in cases that contain
instances.

TexBiG dataset. Recently published [35], the TexBiG provides labels for
document layout analysis, similar to the PubLayNet [46] or DocBank [19] datasets.
It covers 19 classes for complex document layouts in historical documents during
a specific time period, and in the version used here, the training data contains
44,121 instances, the validation data 8,251 instances and the test data 6,678
instances. While the total number of instances is larger as in the VinDr-CXR
dataset, there are only 2,457 images in total, 1,922 in the training set, 335 in
the validation set and 200 in the test set. Due to the iterative creation process
of the dataset, the number of repeated labels is different depending on the sam-
ple. An agreement value was used per image to evaluate which samples were
to be annotated again. For each image, two annotators were assigned, and in
case the agreement value was low after the first iteration, an additional annota-
tor was added to that specific sample. This was done until a maximum of four
annotators per sample. In the combined validation and training set, 34 images
were annotated by 4 annotators, 336 by at least 3 annotators (including the 34
from before), and 2,257 by at least 2 annotators. We created an additional test
set with 5 annotators for 200 newly selected images from the same domain, in
accordance with the guideline provided by the authors [35]. We plan to publish
this test-set for benchmarking purposes on an evaluation server. The TexBiG
dataset is more densely annotated, with 10.7 instances per image, which is 13
time more than the VinDr-CXR dataset. Furthermore, the K-α for the TexBiG
training dataset is higher with 0.93.

Comparing the two datasets we find that they represent two opposing marginal
cases with one dataset having high-agreement and dense annotations, while the
other one has a low-agreement and sparse annotations. However, a more balanced
dataset is missing.
1 Computed by dividing the number of instances by the product of the number of

images and the number of annotators.
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Architecture choice. Regarding the architecture choice, we aimed to find
a well-performing and stable choice, rather than aiming for state-of-the-art re-
sults since we wanted to focus on comparing the ground truth inference methods
and ablation studies on different tasks. For the VinDr-CXR dataset, we tested
various architectures including different anchor-based two-stage detectors like
Faster R-CNN [27], Cascade R-CNN [2] and Double Head R-CNN [40], and
additionally, the transformer-based Detection Transformer (DETR) [3]. After
thorough investigation, we found that the Double Head R-CNN performs sta-
bly and with reasonable results. Therefore, we selected this architecture for our
experiments. On the TexBiG dataset, we tried several instance segmentation
models like Mask R-CNN [13], Cascade Mask R-CNN [2] and DetectorRS [24],
as well as the Mask2Former [6] as a transformer-based architecture. In this case,
DetectoRS yielded the most stable performance, and we continued our experi-
ments with this model. We extended MMDetection [4] with our implementation,
and the code is available on GitHub under https://github.com/Madave94/gtiod.

4.2 Annotation Budget Ablation

When working on a deep learning project, data is often a limiting factor, and re-
sources must be carefully allocated to create task-specific data. Even when there
are ample resources, maximizing the value of those resources is important. In the
context of human-annotated data, this concept is referred to as the “annotation
budget”, which represents the available number of images or instances that can
be labeled by a pool of annotators within their available time. The question then
becomes, “How can a limited annotation budget be best utilized?” One approach
is to prioritize annotating as many different images as possible to cover a broad
range of cases within the application domain. However, this approach comes
with the risk of introducing more noisy labels due to the inherent variability
in annotator performance. Alternatively, creating repeated labels may be more
beneficial to improve the quality of the annotations. Ultimately, the decision
between prioritizing quantity versus quality of labels must be carefully weighed
and considered in the context of the project goals and available resources.

In the two ablation studies presented in Table 2 and 3, we compare the
performance of different annotation budgets, which refer to the available number
of images or instances that can be labeled with the pool of annotators and their
available time. The splits used in the studies represent three different cases: (1)
Only single annotated labels are available, which are more prone to label noise.
(2) A mix of repeated labels and single annotated labels is available. Multiple
splits may have this property. (3) Maximum label repetition, where no or very
few single annotated labels are available, resulting in significantly less training
data. To reduce randomization effects, we create five different random versions
for each split and compute their mean and maximum results.

Our results show that the TexBiG dataset quickly reached a data saturation
point, suggesting potential benefits from employing multi-annotator learning
methods to better utilize repeated labels. Conversely, the VinDr-CXR dataset

https://github.com/Madave94/gtiod
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Split Budget Averaged Maximum
rel. abs. AP APbb AP APbb

1922ˆ2 100% 3844 41.9 47.5 43.3 48.7
966ˆ2
966ˆ1 75% 2883 42.4 47.9 42.8 48.4

1922ˆ1 50% 1922 42.7 48.3 43.4 48.8
641ˆ2
640ˆ1 50% 1922 42.4 47.7 43.9 48.8

966ˆ2 50% 1922 41.1 46.2 42.8 47.8
30ˆ4

243ˆ3
1073ˆ1

50% 1922 41.9 47.3 43.0 48.2

30ˆ4
243ˆ3
536ˆ2

1ˆ1

50% 1922 39.7 45.0 41.0 46.5

Table 2. Ablation study on the TexBiG
dataset using a limited annotation budget.
The results are in mAP@r.5 : .95s, show
that multi annotator learning methods are
required to justify repeated labels. How-
ever, even without multi annotator meth-
ods the performance loss using repeated an-
notations is marginal.

Split Budget Avg.
AP

Max.
APrel. abs.

15,000ˆ2 66.6% 30,000 14.8 15.0
10,000ˆ3 66.6% 30,000 14.7 14.9
15,000ˆ1 33.3% 15,000 13.4 13.9
10,000ˆ1
2,500ˆ2 33.3% 15,000 13.6 14.1

7,500ˆ2 33.3% 15,000 13.5 13.8
3,000ˆ3
3,000ˆ2 33.3% 15,000 13.6 14.3

5,000ˆ3 33.3% 15,000 13.4 14.0
Table 3. Ablation study on the VinDr-
CXR dataset using a limited annota-
tion budget. The results are in mAP40

as provided by the leaderboard.

showed improved performance with higher budgets, indicating that more data
helps performance in scenarios with noisy, low-agreement labels.

Both datasets demonstrate that moderate inclusion of repeated labels does
not adversely impact performance, with mixed splits achieving peak results at
their lowest budgets. These findings highlight the value of repeated annotations,
which not only increase label reliability, but also allow for efficient use of multi-
annotator learning methods. Remarkably, the opportunity costs for creating such
repeated labels seem negligible.

Our findings suggest that higher fragmentation in annotator splits could lead
to reduced performance, possibly due to enhanced intracoder consistency. More-
over, the influence of split distribution appears prominent only when the an-
notation budget is limited. Identifying a systematic relationship between split
distribution and performance, thereby suggesting optimal splits before the an-
notation process, could be a promising future research direction.

The overall takeaway is that multiple annotations may not always yield sig-
nificant advantages, yet in scenarios with a constrained annotation budget, they
could prove beneficial. Determining which cases fall into each category remains
an open challenge.
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4.3 Leave-One-Out Annotator Selection

Table 4 displays the results of a final experiment conducted on the TexBiG
dataset. To create four groups of annotators, each group consisting of one to
three individuals, annotations were distributed unevenly among them, resulting
in groups of different sizes. Subsequently, each group was left out of the train-
ing process, while the remaining three groups were used to train the model.
This approach led to a smaller training set. Surprisingly, the experiment showed
that when the largest group, denoted as B, was excluded, leaving only 61.6%
of the annotations available, the model’s performance reached its peak. This
outcome underscores the importance of selecting precise annotators in the train-
ing process, since less precise ones may introduce noisy labels that can hinder
performance. However, it is challenging to identify precise annotators before the
annotation process, as there is no data available to determine their level of pre-
cision.

Left out
group

Left out
images

Left out
annotations

Perfor-
mance

rel. abs. rel. abs. AP APbb

Group A 25.1% 1,040 26.8% 11,810 42.4 47.1
Group B 29.5% 1,225 38.4% 16,932 44.1 49.8
Group C 25.7% 1,067 18.2% 8,017 42.6 48.1
Group D 19.7% 815 16.7% 7,362 43.1 48.3

Table 4. Choosing the right annotator? If annotators are not in the group what would
happen to the results? Splits are unequal, due to the annotation distribution.

5 Conclusion

Our results indicate the potential benefits of repeated labels which seem to be
contingent on several factors. The identified key factors are the balance between
(1) the complexity or variation in the dataset and its corresponding task diffi-
culty, (2) the variability in annotation depending on inter-annotator consistency
and annotator proficiency, and (3) the constraints of the annotation budget. This
interaction suggests the existence of an ‘optimal range’ for image annotation
strategy. For instance, datasets with high variance and low annotator consis-
tency may benefit from multiple annotations per image, while in cases with low
image variation and high annotator consistency, many images annotated once
might suffice. This balancing act between data and annotation variation could
guide decisions when choosing between single or multiple annotators per image,
given a fixed annotation budget.

However, the utility of repeated labels is substantially hampered due to the
lack of multi-annotator-learning approaches for object detection and instance
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segmentation. Thus, future work should concentrate on developing methods that
bridge this gap between these areas and other computer vision domains like
image classification or semantic segmentation.

Lastly, a significant challenge remains regarding the availability of suitable
datasets. With limited datasets in the domain and disparities among them, our
findings’ generalizability remains constrained to the two domains covered in this
study. A larger dataset with repeated labels and balanced agreement would be
valuable for future research. Synthetic data could be beneficial but pose the
risk that models trained on these data may only learn the distribution used to
randomly create repeated labels from the original annotations. Thus, creating a
suitable dataset remains a formidable task.

Acknowledgments. This work was supported by the Thuringian Ministry for
Economy, Science and Digital Society / Thüringer Aufbaubank (TMWWDG /
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Appendix 1

This section presents our adaptation of the weighted box fusion (WBF) tech-
nique, tailored specifically for instance segmentation as a weighted mask fusion
(WMF).

In their study, [18] propose a method for combining annotations from multiple
annotators using a weighted box fusion [32] approach. In this method, bounding
boxes are matched greedily only with boxes of the same class, and no annotations
are discarded. The WBF algorithm fuses boxes that exceed a specified overlap
threshold, resulting in new boxes that represent the weighted average of the
original boxes. The approach also allows for inclusion of box confidence scores
and prior weights for each annotator.

To extend the WBF method for instance segmentation, we introduce an op-
tion to fuse segmentation masks, which involves four steps: (1) calculating the
weighted area and weighted center points from the different masks, (2) compute
the average center point and average area from the selected masks, (3) determin-
ing the closest center point of the original masks to the weighted center point and
selecting this mask, and (4) dilating or eroding the chosen mask until the area is
close to the averaged area. The resulting mask is used as the aggregated segmen-
tation mask and is also used as the averaging operation during the aggregation
for LAEM and MJV with uniform weight.

Moreover, we integrate the WBF approach with LAEM, yielding WBF+EM.
This integration involves assessing annotator confidence using LAEM, and sub-
sequently incorporating it into the WBF method to produce weighted average
areas instead of simply averaged areas. While the differences between LAEM and
WBF might seem subtle, WBF+EM offers a more thorough approach to anno-
tator fusion. This modification is relatively minor, and its impact is modest, as
corroborated by our experiments delineated in Appendix 2.

Appendix 2

In this experiment, we carried out a comparative analysis of different ground
truth inference methods. To do this, we separated the annotations for training
and testing, and created various combinations of train-test datasets using the
available ground truth estimation methods. Afterward, a model was trained on
these combinations. The results from this experiment reveal how aggregation
methods can impact the performance of the trained models and show how these
outcomes can vary based on the specific combination of training and testing
aggregation used.

Tables 5 and 6 present the application of various ground truth estimation
methods on repeated labels. In the TexBiG dataset, each method is employed
to aggregate the labels of both training and test data, and all possible train-test
combinations are learned and tested to perform a cross comparison of the differ-
ent ground truth inference methods, as shown in Table 5. The hyperparameter
for the area combination is denoted as Y for union, µ for averaging and X for in-
tersection. Additionally, the plain repeated labels, without any aggregation, are
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DetectoRS Training

TexBiG RL MJV LAEM WBF
Y µ X Y µ X base EM

T
es

t

MJV

Y AP 32.5 34.5 30.4 25.5 35.1 29.1 28.4 30.2 30.7
APbb 34.7 36.6 34.0 29.9 37.5 32.7 33.4 34.4 33.5

µ
AP 41.9 43.9 39.9 35.8 43.6 40.8 35.0 41.5 41.9
APbb 45.6 48.2 44.6 41.4 47.9 44.5 40.2 45.5 46.2

X
AP 44.2 41.7 46.6 45.0 43.2 45.3 45.2 46.0 44.9
APbb 49.6 47.9 51.4 49.9 49.3 50.6 49.5 51.0 49.2

L
A

E
M

Y
AP 31.5 34.9 44.4 25.9 33.6 30.5 26.8 29.8 31.1
APbb 33.6 36.5 48.9 30.5 35.8 33.8 31.4 33.0 34.6

µ
AP 41.1 42.5 40.5 34.9 43.6 40.2 35.9 40.7 40.4
APbb 44.8 46.8 44.6 41.9 47.7 44.3 41.7 45.5 45.1

X
AP 43.5 40.8 43.0 45.0 41.6 44.1 44.0 45.0 45.1
APbb 49.8 46.0 48.5 49.5 46.9 48.9 48.0 49.5 50.3

W
B

F base AP 36.1 38.0 34.8 33.4 37.3 30.3 32.7 34.9 36.9
APbb 38.8 41.6 38.0 37.4 40.2 33.6 37.8 38.5 40.3

EM AP 38.1 39.9 34.9 32.4 39.8 36.5 32.8 36.3 35.9
APbb 40.6 42.8 38.3 36.4 42.8 40.2 37.6 40.0 39.3

Mean AP 38.6 39.5 39.3 34.7 39.7 37.1 35.1 38.1 38.4
APbb 42.2 43.3 43.5 39.6 43.5 41.1 40.0 42.2 42.3

Table 5. Cross-Validation of ground truth inference combinations between training
and test data, for the DetectoRS with a ResNet-50 backbone on the TexBiG dataset.
Showing the mAP@r.5 : .95s for instance masks and bounding boxes. Union is rep-
resented by Y, intersection by X and averaging by µ. RL denotes training conducted
on un-aggregated noisy labels. The two rows on the bottom show how the training
methods perform on average.

compared with the different aggregated test data. Our findings reveal that on a
high-agreement dataset, weighted boxes fusion does not perform well. This could
be attributed to the inclusion of most annotations by WBF, whereas in cases
with high agreement, it is more desirable to exclude non-conforming instances.
Majority voting and localization-aware expectation maximization perform simi-
larly; however, LAEM provides a more elegant solution for addressing edge cases.
Calculating the annotator confidence, as performed in LAEM, is highly advanta-
geous. However, in rare cases, spammer annotators could potentially circumvent
annotation confidence by annotating large portions of simple examples correctly
but failing at hard cases. Such cases would result in a high confidence level for
the spammer, potentially outvoting the correct annotators on challenging and
crucial cases.

The main performance differences between MJV and LAEM arise due to
the application of the three different combination operations – union, averaging,
and intersection. Combining areas by taking their union results in larger areas,
making it easier for a classifier to identify the respective regions. Analysis of the
mean results of the training methods reveals that both MJV+Y and LAEM+Y
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Double Head R-CNN
VinDr-CXR

Training

RL MJV LAEM WBF
Y µ X Y µ X base EM

private LB 16.2 15.2 14.6 14.3 14.9 15.0 14.7 13.7 14.3
Table 6. Comparing results with the private Kaggle leaderboard [22] for the VinDr-
CXR dataset using the double headed R-CNN at mAP40. Union is represented by Y,
intersection by X and averaging by µ. RL denotes training conducted on un-aggregated
noisy labels.

exhibit the highest performance across various test configurations. On the con-
trary, methods parameterized with intersection X yield the lowest mean results.
Training with repeated labels without any aggregation yields results similar to
training with aggregated labels. However, while it may be generally feasible to
train with noisy labels, the performance is slightly dampened. Since the test data
aggregation method is LAEM-µ as described in Section 3.2, the best performing
training method LAEM-Y is choosen as the aggregation method for the training
data in the experiments shown in Section 4.2 and 4.3.

For the VinDr-CXR dataset, a smaller, similar experiment is performed as
shown in Table 6. As the Kaggle leaderboard already provides an aggregated
ground truth and labels are unavailable, only the training data are aggregated.
Our findings indicate that training with plain repeated labels leads to higher
results. Given the low agreement of the dataset, training with repeated labels
may be seen as a form of “label augmentation.” Interestingly, the methods used
to aggregate the test data, such as WBF, do not outperform the other methods.
However, ground truth estimation methods are not designed to boost perfor-
mance but rather to provide a suitable estimation for the targeted outcome.
Based on these results, the following experiments on VinDr-CXR will be run
with the repeated labels for training.

Appendix 3

This section shows three more comparisons between different ground truth aggre-
gation methods, exemplary on the VinDr-CXR dataset [23]. All of them follow
the same structure. Left: the original image with the repeated labels indicated
by the different line types. Right: the four smaller images from top left to bottom
right are, MJV+X, LAEM+µ, LAEM+Y and WBF.
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Fig. 3. Qualitative results on three test images from the VinDr-CXR. Left: the original
image with the repeated labels indicated by the different line types. Right: the four
smaller images from top left to bottom right are, MJV+X, LAEM+µ, LAEM+Y and
WBF.


	Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object Detection with Repeated Labels

