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Abstract. Novel view synthesis (NVS) of multi-human scenes imposes chal-
lenges due to the complex inter-human occlusions. Layered representations han-
dle the complexities by dividing the scene into multi-layered radiance fields, how-
ever, they are mainly constrained to per-scene optimization making them ineffi-
cient. Generalizable human view synthesis methods combine the pre-fitted 3D
human meshes with image features to reach generalization, yet they are mainly
designed to operate on single-human scenes. Another drawback is the reliance on
multi-step optimization techniques for parametric pre-fitting of the 3D body mod-
els that suffer from misalignment with the images in sparse view settings causing
hallucinations in synthesized views. In this work, we propose, GenLayNeRF, a
generalizable layered scene representation for free-viewpoint rendering of mul-
tiple human subjects which requires no per-scene optimization and very sparse
views as input. We divide the scene into multi-human layers anchored by the
3D body meshes. We then ensure pixel-level alignment of the body models with
the input views through a novel end-to-end trainable module that carries out it-
erative parametric correction coupled with multi-view feature fusion to produce
aligned 3D models. For NVS, we extract point-wise image-aligned and human-
anchored features which are correlated and fused using self-attention and cross-
attention modules. We augment low-level RGB values into the features with an
attention-based RGB fusion module. To evaluate our approach, we construct two
multi-human view synthesis datasets; DeepMultiSyn and ZJU-MultiHuman. The
results indicate that our proposed approach outperforms generalizable and non-
human per-scene NeRF methods while performing at par with layered per-scene
methods without test time optimization.
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1 Introduction

Novel view synthesis (NVS) of scenes with human subjects has numerous applications
in telepresence, virtual reality, etc. The extensions [6, 15, 26, 37] of the well-known
NeRF [21] architecture achieved competitive synthesis results using sparse views, yet
suffered with human subjects due to their complex motions. NeuralBody [25] anchored
NeRF with pre-fitted 3D human models to regularize the training producing more photo-
realistic output. A main constraint was the inefficient per-scene optimization require-
ment. Recently, state-of-the-art human-based synthesis methods [3, 12, 20, 44] merged
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the concepts of the human model anchors and the image features to generalize to unseen
poses and human identities. However, they were only designed to operate on scenes with
single human subjects. Multi-human scenes introduce additional challenges due to how
humans occlude each other and the complexity of their close interactions. Layered scene
representations [42] are a possible solution to operate in the complex multi-person set-
ting. Shuai et al. [30] utilized a layered architecture by representing the human entities
using NeuralBody [25] and weakly supervising the human instance segmentation. Nev-
ertheless, the method suffers from the per-scene optimization problem which hinders
its applicability to wider real-world domains. Another issue with existing Human NVS
methods [12, 30, 44] is the reliance on multi-step optimization methods [2, 29, 43] for
the estimation of pre-fitted 3D body models. Such methods hinder the ability of end-to-
end learning and suffer from error accumulation throughout the fitting steps which lead
to inaccurate parameter fitting and misaligned body models and consequently hurts the
synthesis quality of the novel views.

In this paper, we propose generalizable layered neural radiance fields to achieve
free-viewpoint rendering of multi-human subjects, while requiring no test-time opti-
mization for novel subjects or poses. We fuse the concepts of implicit feature aggre-
gation and layered scene representations to synthesize novel views of complex human
interactions from very sparse input streams. Specifically, we divide the scene into a set
of human layers anchored by the 3D human body meshes. We then introduce a novel
end-to-end trainable human-image alignment module that utilizes an iterative feedback
loop [41] to correct parametric errors in the pre-fitted human models and produces
pixel-aligned human layers for better synthesis quality. For view synthesis, we extract
a set of point-wise image-aligned and human-anchored features for all views and effec-
tively aggregate them using self-attention and cross-attention modules. We also include
an RGB fusion module that embeds the fused features with low-level pixel information
from the images for retaining high-frequency details.

Our main contributions are summarized as follows:

– We propose a generalizable layered representation with a novel combination of
three attention-based feature fusion modules for free-viewpoint rendering of multi-
human scenes from sparse input views while operating on novel human subjects
and poses.

– We present a novel human-image alignment module that corrects misalignment er-
rors in the pre-fitted human models through an end-to-end trainable iterative feed-
back loop coupled with multi-view self-attention feature fusion.

– We surpass state-of-the-art generalizable and non-human per-scene NeRF methods
while performing at par with the multi-human per-scene methods without requiring
long per-scene training procedures.

2 Related Work

2.1 Neural View Synthesis

Recent progress has been made in utilizing neural networks along with differentiable
rendering for novel view synthesis [1, 5, 13, 32, 33, 36, 38]. NeRF [21] encapsulated the
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full continuous 5D radiance field of scenes inside a Multi-Layer Perceptron (MLP).
They achieved photo-realistic results but failed to work on highly deformable scenes
with non-static subjects. Deformable NeRF methods [23, 26] modeled the dynamic
subjects by training a deformation network that transforms 3D points to a canonical
space before querying the MLP. Yet, they show poor synthesis quality for human sub-
jects with complex deformations. NeuralBody [25] anchored NeRF with a deformable
human model [18] to provide a prior over the human body shape and correctly ren-
der self-occluded regions. However, they lacked generalization capabilities for novel
scenes. Per-scene optimization NeRF methods [21,25,25,26,30] need to be trained from
scratch on each scene which is often impractical due to the large time and computational
costs. Generalizable NeRF methods [34, 35, 39] offer a solution by conditioning NeRF
on pixel-aligned features generated from the input images which enhanced the results
for unseen scenes with sparse input views. Recently, NHP [12] combined the 3D human
mesh with image features to accurately represent complex body dynamics and general-
ize to novel human subjects and poses. HumanNeRF [44] enhanced the quality through
efficient fine-tuning procedures and neural appearance blending techniques. However,
the blending module operates on pre-scanned synthetic data with accurate depth maps
and cannot be extended to real-world data. One limitation of state-of-the-art general-
izable human methods [3, 12, 44] lies in the inability to be extended to multi-human
scenes which are challenging due to the inter-human occlusions and interactions.

Layered scene representations [19] were proposed to handle complex scenes with
multiple human subjects. ST-NeRF [42] modeled each human layer using a deformable
model similar to D-NeRF [26] to achieve editable free-viewpoint rendering. Recently,
Shuai et al. [30] extended ST-NeRF by modeling the human subjects using Neural-
Body [25] and predicted human segmentation masks as part of the network training.
The restriction of both methods is requiring per-scene training procedures for learn-
ing, yielding them inefficient to use. We tackle the existing research gap by proposing a
generalizable layered scene representation for synthesizing novel views of multi-human
subjects through a combination of image features and layered neural radiance fields. We
achieve free-viewpoint rendering for scenes with an arbitrary number of humans from
very sparse input views, while generalizing to novel subjects and poses at test time
without extra optimization.

2.2 Human Mesh Recovery

Mesh Recovery of human subjects has grabbed significant research attention due to
its adoption in 3D geometry reconstruction and novel view synthesis. One direction
of approaches solves the task through a multi-step optimization process which fits the
parametric human models (i.e. SMPL [18]) based on 2D observations such as keypoints
or silhouettes [8,31]. Bogo et al. [2] utilized 2D joint predictions from monocular input
to guide the SMPL fitting process for single-human scenes. Zhang et al. [43] tackled
a more challenging multi-person setting by leveraging triangulated 3D keypoints and
a two-step parametric fitting process for enhanced results. The main issues with multi-
step methods are breaking the end-to-end learning and the error accumulation through-
out the steps, especially in sparse-view datasets. Specifically, 2D keypoints predictions
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could suffer from inaccurate joints in certain views which hurts the triangulation pro-
cess leading to low-quality 3D keypoint predictions. The parametric model fitting is
subject to errors due to the abundance of hyperparameters [43] that require meticu-
lous finetuning and the accumulated errors from the previous steps. On the other hand,
regression-based approaches aim for better human-image alignment by directly regress-
ing the body models from input images [10,11,16,17,40,41]. PyMAF [41] introduced a
feedback loop with multi-scale contexts to correct parametric deviations for producing
highly aligned meshes from monocular input images for single-humans.

Existing Human NVS approaches [3,12,20,25,44] utilize pre-fitted 3D observations
computed using multi-step optimization approaches [29, 43]. However, in sparse-view
settings, the pre-fitted predictions suffer from misalignment errors that consequently
hurt the quality of the synthesized views. Mihajlovi et al. [20] utilized 3D keypoints
instead of body models to avoid parametric fitting errors. L-NeRF [30] introduced a
time-synchronization step that accounts for the multi-view image de-synchronization
by producing a per-view body model using predicted time offsets. However, they do not
account for parametric errors occurring in the multi-step fitting process. In this work,
we propose a novel regression-based human-image alignment module that ensures the
correction of parametric errors leading to aligned body models with multi-view input.

3 Methodology

3.1 Problem Definition

Given a synchronized set Ω of frames I taken from B sparse input viewpoints of a
scene with N arbitrary number of humans, such that Ω = {I1, .., IB}, our target is
to synthesize a novel view frame {Iq} of the scene from a query viewing direction q.
Each input viewpoint b is represented by the corresponding camera intrinsics K, and
camera rotation R and translation t, where b = {Kb, [Rb|tb]}. The N pre-fitted 3D
human body meshes are given for each input frame. Each human h is represented using
the SMPL [18] model which is a deformable skinned model defined in terms of pose
and shape parameters Θ0

h while also being vertex-based where each model sh consists
of 6,480 vertices, such that sh ∈ R6,480×3. For an input view image Ib ∈ RH×W×3

with height H and width W , we extract a multi-scale feature pyramid I
′

b,{0:T−1} with
T levels using a ResNet34 [9] backbone network f , pre-trained on ImageNet, such that
I

′

b,{0:T−1} = f(Ib). The operation is carried out for all input views b in {1, .., B}. A
full overview of the proposed architecture is shown in Fig. 1 .

3.2 Human-Image Alignment Module

Pre-fitted human body models can suffer from misalignment with the input images due
to error accumulation throughout the multi-step fitting process [43], especially in sparse
view settings, which causes hallucinations in synthesized views. We propose an align-
ment module that is end-to-end trainable with our NVS architecture and carries out
iterative parametric correction with closed feedback [41] to ensure a better alignment
of the SMPL models with the multi-view input images. The module takes the pre-
fitted SMPL parameters Θ0

h as input and returns the aligned and adjusted parameters
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Fig. 1: Overview of the GenLayNeRF approach. We consolidate a layered scene rep-
resentation where each human subject is modeled using the SMPL model. Regarding
our alignment module, at a step l, low and high-resolution feature planes I ′1:B,{l−1,l}
are concatenated and the SMPL vertices are projected on them to produce feature-
embedded vertices vl1:B (Concat & Project). We then diffuse the vertices to continuous
spaces and query them at downsampled vertex locations to generate multi-view human
features ṽl1:B (Diffuse & Query), which are fused using self-attention and passed along
with parameters Θl to predict the adjusted parameters Θl+1. In our NVS architecture,
we project rays through the aligned scene layers and sample per-layer 3D points within
the intersections areas with the layers (shown in the top view). Point-wise features are
extracted and fused to output the final fused features g̃x1:B , which are passed to the den-
sity network to predict the volume density σ(x), whereas the color network uses the
raw RGB values rx1:B and q to predict the color c(x, q).

ΘL
h . Specifically, we employ an iterative process with L steps, such that, for a step

l > 0, low-resolution features I
′

b,l−1 from level l − 1 for view b are upsampled using
deconvolution [22] and concatenated with high-resolution feature plane I

′

b,l at level l
resulting in a contextualized and localized feature plane I

′′

b,l. Human vertices slh are
embedded with image features by projection on the multi-view feature map, such that,
vlh,b = I

′′

b,l[Kb((Rbs
l
h) + tb)]. vlh,b ∈ R6,480×C1 represents the features of the vertices

projected on feature map I
′′

b,l for human h. The preceding part corresponds to "Concat
& Project" in Fig. 1.

Our target is to retrieve a compact and continuous per-human feature representation
to be used for parameter adjustment. For that reason, the sparse human vertices vlh,b
need to be diffused into a continuous space that can be queried at any location. We
incorporate the SparseConvNet [7,25] architecture which utilizes 3D sparse convolution
to diffuse the vertex features into different nearby continuous spaces for every human
and view. The diffused vertices are denoted as dlh,b. To obtain the per-human features,
we downsample the vertices slh, such that s̃lh ∈ R431×3, and query the diffused vertex
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spaces at the downsampled locations to obtain the multi-view per-human vertex features
which are then processed and flattened to obtain a compact version denoted as ṽlh,b ∈
R1×C2 . The preceding part corresponds to "Diffuse & Query" in Fig. 1. Afterward, we
effectively correlate the multi-view human features using a self-attention module, such
that,

mvlh = soft(
1√
dk1

query(ṽh,1:B) . key(ṽ
l
h,1:B)

T ),

v̂lh,1:B = mvlh . val1(ṽ
l
h,1:B) + val2(ṽ

l
h,1:B),

mvlh ∈ RB×B , ṽlh,1:B ∈ RB×C2 ,

(1)

where key, query, and (val1, val2) represent the key, query, and value embeddings of
the corresponding argument features respectively, and dk1

denotes the dimensionality
of the key embedding. soft denotes the softmax operation. We carry out view-wise
averaging for multi-view fusion on the view-aware human features such that, v̂lh =
1
B

∑
b v̂

l
h,b. Lastly, the fused per-human features are concatenated (⊕) with the current

SMPL parameters and passed to a correction MLP that predicts parameter alignment
offsets ∆Θl

h which are added to the current parameters, such that,

∆Θl
h = MLPalign([v̂

l
h ⊕Θl

h]),

Θl+1
h = Θl

h +∆Θl
h,

(2)

The updated parameters Θl+1
h are used to retrieve the adjusted SMPL vertices sl+1

h and
are passed to the next step l + 1. After L steps, the aligned SMPL parameters ΘL

h ,
vertices sLh , and diffused spaces dLh,1:B are passed to our layered NVS architecture.

3.3 Layered Scene Representation

Scenes with multiple humans suffer from inter-human occlusions that become evident
when subjects closely interact together. A practical solution to handle complex multi-
human scenarios is dividing the scene into distinct layers where each layer models an
entity using a neural radiance field [19, 42]. Entities can be humans, objects, or back-
ground. Our proposed approach focuses mainly on human layers represented using the
SMPL [18] model which is responsible for preserving the local geometry and appear-
ance of humans making it possible to model their complex deformations and occluded
areas.

Our aim is to render the full novel view image Iq from a query viewpoint q. To
achieve that, we first use the camera-to-world projection matrix, defined as P−1 =
[Rq|tq]−1K−1

q , to march 3D rays across the multi-layered scene. In practice, we have a
ray for each pixel p in the final image, where the ray origin r0 ∈ R3 is the camera center
and the ray direction is given as i = P−1p−r0

||P−1p−r0|| . 3D points x are sampled across the rays
at specific depth values z, where x = r(z) = r0 + zi. Since we have several human
layers in the scene, we determine the intersection areas of the rays with the humans
using the 3D bounding box around each layer defined by the minimum and maximum
vertex points of the aligned SMPL meshes sL1:N . We then sample depth values within
the np intersecting areas only such that z ∈ [[znear1 , zfar1 ], .., [znearnp

, zfarnp
]]. This
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guarantees that the sampled points lie within the areas of the relevant human subjects
as clear in the top view shown in Fig. 1.

3.4 Feature Extraction and Attention-Aware Fusion

In our proposed approach, we extract multi-view image features for each query point x
and effectively merge them using attention-based fusion modules to derive the needed
spatially-aligned feature vectors. This enables us to extrapolate to novel human subjects
and poses by learning implicit correlations between the independent human layers.

Image-aligned And Human-anchored Features Image-aligned point-wise features
are extracted by projecting the point x on all the feature maps I

′′

b,L to collect the cor-
responding image-aligned features for each view b denoted as pxb . In addition, human-
anchored features are beneficial for maintaining the complex geometric structure of the
human body by anchoring the network on the available SMPL body priors. Existing
layered scene representations [30] follow the approach of NeuralBody [25] by encod-
ing the vertices of human layers using learnable embeddings that are unique to each
layer in each training scene. In our approach, we utilize the vertices vL1:N,1:B embed-
ded with image features from the alignment module to enable a generalizable approach
conditioned on the input images. The radiance field predictor is queried using contin-
uous 3D sampled points. For that reason, we utilize the diffused vertex spaces dLh,1:B
for each human h and transform x to the SMPL coordinate space of its correspond-
ing human layer. Trilinear interpolation is then utilized to retrieve the corresponding
human-anchored features gxb from the diffused spaces of each view b.

Attention-Aware Feature Fusion To fuse the point-wise feature representations gx1:B ,
px1:B for point x, one strategy is a basic averaging approach [27, 28]. This leads to
smoother output and ineffective utilization of the information seen from distinct views.
To learn effective cross-view correlations, we employ a self-attention module that at-
tends between all the multi-view human-anchored features gx1:B where each feature in
one view is augmented with the extra features seen from the other views. Each view
feature is first concatenated with its corresponding viewing direction d′b. The formula-
tion is the same as the one shown in Eq. (1). The produced view-aware human-anchored
features are denoted as ĝx1:B .

We additionally make use of the rich spatial information in the image-aligned fea-
tures by carrying out cross-attention from the view-aware human-anchored features to
the image-aligned features. The similarity between the multi-view image features and
the per-view vertex features is used to re-weigh the image features and embed them
with the vertex features. The fused features g̃x1:B are calculated with a formulation simi-
lar to Eq. (1). The detailed formulation of our cross-attention and self-attention modules
is shown in the supplementary material. Afterward, we carry out view-wise averaging,
such that g̃x = 1

B

∑
b g̃

x
b , to generate the final fused feature representation for x.
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3.5 Radiance Field Predictor

Color Network. To predict the color c of point x, we use the query viewing direc-
tion q to model the view-dependent effects [21]. In addition, we explicitly augment the
high-level features with low-level pixel-wise information to leverage the high-frequency
details in the images. This has been achieved with an RGB fusion module which con-
catenates the high-level features with the encoded raw RGB values rxb for each view b.
RGB values from closer input views are assigned higher weights by cross-attending q
with the input viewing directions d′1:B such that,

c̃x = MLPc1(g̃
x
1:B ; γ(q); p

x
1:B),

ĉx1:B = {[c̃x ⊕ γ(rx1)], ..., [c̃
x ⊕ γ(rxB)]},

rgbxatt = soft(
1√
dk2

query(q) . key(d′1:B)
T ),

c(x, q) = MLPc2(rgb
x
att . val1(ĉ

x
1:B)),

rgbxatt ∈ R1×B ,

(3)

Density Network. We predict volume density σ(x) for point x using the fused
feature g̃x, such that, σ(x) = MLPσ(g̃

x).
MLPσ , MLPc1 , and MLPc2 consist of fully connected layers described in the

supplementary material. γ : R3 → R(6×l)+3 denotes a positional encoding [21] with
2× l basis functions and dk2

is set to 16.

3.6 Layered Volumteric Rendering and Loss Functions

Layered volumetric rendering is used to accumulate the predicted RGB and density
for all points across human layers. The points in intersecting areas np the layers are
sorted based on their depth value z before accumulation. The detailed formulation is
shown in the supplementary material. Given a ground truth novel view image Igtq , all
network weights are supervised using the L2 Norm (||.||) photo-metric loss. In addi-
tion, we include two losses to explicitly supervise the training of our alignment module
weights. Given a set of pseudo ground truth 2D keypoints Jgt, we derive the predicted
2D keypoints J̃ from the adjusted vertices sL following PyMAF [41] and minimize the
keypoint difference weighted by the ground truth confidence of each body joint. We
also include a regularization term on the SMPL parameters to avoid large parametric
deviations. The final loss function for our network is written as,

L = λph||Igtq − Iq||+ λkpts||Jgt − J̃ ||+ λreg||ΘL||, (4)

4 Experiments

In this section, we introduce the datasets, baselines, experimental results, and ablation
studies. Details about our training procedure are in the supplementary material.
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Table 1: Comparison with generalizable and per-scene NeRF methods on the DeepMul-
tiSyn and ZJU-MultiHuman Datasets. "G" and "S" denote generalizable and per-scene
methods, respectively. "*" refers to human-based methods. PSNR and SSIM metric val-
ues are the greater the better. "ft" refers to finetuning.

Method
DeepMultiSyn ZJUMultiHuman
PSNR SSIM PSNR SSIM

(a) Seen Models, Seen Poses

S

NeRF 15.49 0.497 16.42 0.525
D-NeRF 17.08 0.702 18.53 0.748
L-NeRF* 24.04 0.858 25.10 0.903
Oursft 25.05 0.889 25.21 0.916

G

PixelNeRF 14.81 0.534 19.74 0.629
SRF 20.39 0.724 17.87 0.657
IBRNet 19.45 0.741 20.03 0.766
NHP* 20.91 0.698 21.75 0.813
Ours 24.01 0.859 25.02 0.901

Method
DeepMultiSyn ZJUMultiHuman
PSNR SSIM PSNR SSIM

(b) Seen Models, Unseen Poses
S L-NeRF* 22.12 0.825 23.02 0.871

G

PixelNeRF 14.14 0.520 16.88 0.560
SRF 18.07 0.663 17.93 0.680
IBRNet 18.01 0.710 19.84 0.772
NHP* 20.26 0.677 20.64 0.791
Ours 23.45 0.862 23.76 0.882

(c) Unseen Models, Unseen Poses

G

PixelNeRF 13.12 0.457

Not Applicable
SRF 13.95 0.548
IBRNet 18.80 0.672
NHP* 19.51 0.678
Ours 21.03 0.802

4.1 Datasets

The existence of readily-available open-source multi-human view synthesis datasets
is limited. To solve this challenge, we construct two new datasets, ZJU-MultiHuman
and DeepMultiSyn. Both datasets will be published to be used by multi-human view
synthesis methods. We also include a subset of the single-human ZJU-MoCap dataset
for diversity. Extra details on the datasets are included in the supplementary material.

DeepMultiSyn. The DeepMultiSyn dataset is an adaptation of the 3D reconstruc-
tion dataset published by DeepMultiCap [45]. We take the raw real-world multi-view
sequences and process them for novel view synthesis. There exist 3 video sequences of
scenes containing 2 to 3 human subjects captured from 6 synchronized cameras. Fol-
lowing NeuralBody [25], we use EasyMoCap [29] to fit the SMPL human models for
all the subjects in the available frames. Additionally, we predict the human segmenta-
tion masks following [14] to separate the humans from the background. This dataset is
considered challenging due to the existence of close interactions and complex human
actions such as boxing, and dancing activities.

ZJU-MultiHuman. The ZJU-MultiHuman dataset consists of one video sequence
with 600 frames taken from 8 uniformly distributed synchronized cameras. The video
sequence was published online [29] with the calibration files. The captured scene con-
tains 4 different human subjects. Similar to DeepMultiSyn, we predict the SMPL mod-
els and segmentation masks utilizing [14, 29].

4.2 Baselines

We compare our proposed approach with generalizable and per-scene NeRF methods.
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GT Ours NHP IBRNet GT Ours NHP IBRNet

Fig. 2: Comparison with generalizable methods on seen models/unseen poses [top row]
and unseen models/unseen poses [bottom row] for the DeepMultiSyn Dataset.

GT Ours L-NeRF

Fig. 3: Comparison with a per-scene
multi-human method [30] on seen mod-
els/unseen poses on the DeepMultiSyn
Dataset.

GT Ours

NHP IBRNet

Fig. 4: Comparison with generalizable
methods on seen models/unseen poses for
the ZJU-MultiHuman Dataset.

Comparison with generalizable NeRF methods. Generalizable human-based NeRF
methods [3, 12, 20, 44] operate only on scenes with single humans. We choose to com-
pare against NHP [12] after adjusting it to work on multi-human scenes by using the
segmentation masks to render a separate image for each individual in the scene. We
then superimpose the human images based on their depth to render the novel view im-
age. Regarding non-human methods, PixelNeRF [39] is the first to condition NeRF on
pixel-aligned features for generalization. IBRNet [35] and SRF [4] additionally utilize
image-based rendering and stereo correspondences, respectively, to achieve generaliz-
able properties. All methods were trained on all human scenes simultaneously.

Comparison with per-scene methods. We evaluate our performance compared to
the multi-human layered scene representation approach [30], denoted as L-NeRF. We
also compare against D-NeRF [26] and the original NeRF [21] method. All of the men-
tioned approaches are trained on each scene separately with the same train-test splits.
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Fig. 5: Visualization of the output of
our human-image alignment module
(SMPLaligned) given the misaligned pre-
fitted model (SMPLoriginal). "tgt_walign"
and "tgt_w/oalign" denote the rendered
image with/without our alignment module.

Table 2: Ablation study results on seen
models and unseen poses for the Deep-
MultiSyn dataset. "# V." denotes the num-
ber of views.

crs slf rgb align V. PSNR ↑ SSIM ↑
3 20.92 0.7860
3 21.45 0.8005
3 21.98 0.8093
3 22.19 0.8260
3 23.45 0.8620
1 21.98 0.8091
2 22.32 0.8379
4 23.72 0.8711

4.3 Experimental Results

Our evaluation spans three generalization settings as follows:
Seen Models, Seen Poses. In this setting, we test on the same human subjects and

poses that the model is trained on. Tab. 1a indicates the results in terms of the per-scene
and generalizable baselines. Regarding the generalizable approaches, our method ex-
hibits the best overall performance on both datasets on all metrics. For the per-scene
approaches, our proposed method performs at par with the state-of-the-art per-scene
baseline (L-NeRF), while effectively saving computational and time resources by tak-
ing 50 hours to converge on all the scenes simultaneously compared to 144 hours for
per-scene training. After per-scene finetuning, our method surpasses L-NeRF on both
datasets. Qualitative comparisons for the per-scene methods are included in the supple-
mentary material.

Pose Generalization. We additionally test all approaches on the same human sub-
jects seen during training, but with novel poses. On both datasets, Tab. 1b shows that
our approach outperforms all the generalizable NeRF methods on all metrics. L-NeRF
lags behind our method on the DeepMultiSyn dataset due to the complex novel poses
which validates the pose generalization ability of our method on challenging motions.
In Fig. 2 and Fig. 4, IBRNet fails to model the full body of the human subjects prop-
erly, while NHP fails to represent areas of occlusions where subjects highly overlap.
However, our method successfully models the body shapes and can handle overlapping
areas which validates the effectiveness of the layered scene representation in the gen-
eralizable multi-human setting. Fig. 3 shows how L-NeRF fails to properly render the
appearance of subjects when presented with complex unseen poses.

Human Generalization. A challenging setting would be testing on human subjects
and poses not seen during training. This was done on the DeepMultiSyn dataset by leav-
ing out two different scenes for testing. Tab. 1c validates that our method has the best
generalization capability as it outperforms all other methods by a large margin. The bot-
tom row of Fig. 2 shows that our method better represents the main body features of the
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novel human subjects. IBRNet fails to render some body parts like the legs, while NHP
suffers from more blur artifacts, especially in overlapping areas. In the supplementary
material, we show that our method surpasses NHP by a large margin even on single
humans in the ZJU-MoCap dataset for both pose and human generalization settings.

4.4 Ablation Studies

Effect of Human-Image Alignment. We evaluate the impact of the proposed human-
image alignment module on the synthesis quality. Quantitatively, Tab. 2 shows the supe-
rior enhancement offered by the alignment module (align) on both metrics. In Fig. 5, we
demonstrate the large misalignment between the pre-fitted SMPL model and the image
which caused severe hallucinations in the synthesized image (areas with red boxes). Our
module successfully aligns the SMPL model with the images leading to higher-quality
synthesis results. We include additional results of our module in the supplementary
material.

Effect of Fusion modules. We assess the effect of different fusion modules on the
synthesis results. From Tab. 2, the second row uses the cross-attention module (crs) in
Sec. 3.4 and it shows a noticeable improvement over doing basic average pooling in the
first row. This indicates the effectiveness of the correlation learned between the vertex
and image features. The addition of the self-attention module (slf) in Sec. 3.4 in the
third row led to the incorporation of multi-view aware features and achieved a slight
enhancement on both metrics. The last row adds the raw RGB fusion module (rgb) in
the Color Network presented in Sec. 3.5. It enhances the performance, especially on the
SSIM metric, validating the importance of utilizing low-level information.

Effect of Number of Views. We evaluate the performance of our proposed approach
when given a different number of input views at test time. Tab. 2 indicates that using 4
views leads to an enhancement in both metrics due to the extra information available.
Decreasing the number of views gradually degrades the performance. However, using
only one input view, our method outperforms all the generalizable NeRF methods in
Tab. 1 that use 3 input views.

5 Limitations & Future Work

Several enhancements to our proposed method could be investigated further. As our two
proposed datasets were sufficient to show the generalization capability of our method,
there is room for improvement by elevating the diversity in terms of the number of
scenes, camera views, distinct humans, and complex actions. This would lead to better
generalization capabilities on broader challenging scenarios. Furthermore, our method
suffers from blur artifacts representing human clothing details such as skirts as seen in
Fig. 3. One could experiment with integrating a deformation model [26] to represent
small deformations such as textured clothing. In addition, adjustments could be made
to allow for human-image alignment for more complex body models such as SMPL-
X [24]. Lastly, a research direction could explore the optimization of the body model
parameters from scratch with multi-view time synchronization taken into consideration.
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6 Conclusion

We introduce a generalizable layered scene representation for free-viewpoint rendering
of multi-human scenes using very sparse input views while operating on unseen poses
and subjects without test time optimization. We additionally present a novel end-to-end
human-image alignment module that corrects parametric errors in the pre-fitted body
models leading to pixel-level alignment of human layers with the input images. Regard-
ing view synthesis, we divide the scene into a set of multi-human layers. We then gen-
erate point-wise image features and human-anchored features and utilize a combination
of cross-attention and self-attention modules that effectively fuse the information seen
from different viewpoints. In addition, we introduce an RGB fusion module to embed
low-level pixel values into the color prediction for higher-quality results. We assess the
efficacy of our approach on two newly proposed multi-human datasets. Experimental
results show that our method outperforms state-of-the-art generalizable NeRF methods
in different generalization settings and performs at par with layered per-scene meth-
ods without long per-scene optimization runs. We also validate the effectiveness of our
alignment module by showing its significant enhancement on the synthesis quality. Our
module could be integrated with existing SMPL-based synthesis methods to elevate the
performance by improving the human-image alignment.
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20. Mihajlović, M., Bansal, A., Zollhoefer, M., Tang, S., Saito, S.: Keypointnerf: Generalizing
image-based volumetric avatars using relative spatial encoding of keypoints. In: European
Conference on Computer Vision (2022)

21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:
Representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

22. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation.
2015 IEEE International Conference on Computer Vision (ICCV) pp. 1520–1528 (2015)

23. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D., Seitz, S., Martin-Brualla, R.:
Deformable neural radiance fields. https://arxiv.org/abs/2011.12948 (2020)

24. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A.A., Tzionas, D., Black,
M.J.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). pp. 10975–10985
(2019)

25. Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural body: Implicit
neural representations with structured latent codes for novel view synthesis of dynamic hu-
mans. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
pp. 9050–9059 (2021)

26. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: Neural radiance
fields for dynamic scenes. https://arxiv.org/abs/2011.13961 (2020)

27. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitization. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) pp. 2304–2314 (2019)

28. Saito, S., Simon, T., Saragih, J.M., Joo, H.: Pifuhd: Multi-level pixel-aligned implicit func-
tion for high-resolution 3d human digitization. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) pp. 81–90 (2020)

https://doi.org/10.1109/TPAMI.2020.3048039


Title Suppressed Due to Excessive Length 15

29. Shuai, Q., Geng, C., Fang, Q., Peng, S., Shen, W., Zhou, X., Bao, H.: Easymocap - make
human motion capture easier. Github (2021), https://github.com/zju3dv/EasyMocap

30. Shuai, Q., Geng, C., Fang, Q., Peng, S., Shen, W., Zhou, X., Bao, H.: Novel view synthesis
of human interactions from sparse multi-view videos. ACM SIGGRAPH (2022)

31. Sigal, L., Balan, A.O., Black, M.J.: Combined discriminative and generative articulated pose
and non-rigid shape estimation. In: NIPS (2007)

32. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: Deepvoxels:
Learning persistent 3d feature embeddings. 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) pp. 2432–2441 (2019)

33. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis using neu-
ral textures. arXiv: Computer Vision and Pattern Recognition (2019)

34. Trevithick, A., Yang, B.: Grf: Learning a general radiance field for 3d scene representation
and rendering. ArXiv abs/2010.04595 (2020)

35. Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-Brualla,
R., Snavely, N., Funkhouser, T.A.: Ibrnet: Learning multi-view image-based rendering. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4688–4697
(2021)

36. Wu, M., Wang, Y., Hu, Q., Yu, J.: Multi-view neural human rendering. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1679–1688 (2020)

37. Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-
viewpoint video. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 9416–9426 (2021)

38. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: Learning single-
view 3d object reconstruction without 3d supervision. ArXiv abs/1612.00814 (2016)

39. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from one or few
images. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
pp. 4576–4585 (2021)

40. Zanfir, A., Bazavan, E.G., Xu, H., Freeman, B., Sukthankar, R., Sminchisescu, C.: Weakly
supervised 3d human pose and shape reconstruction with normalizing flows. ArXiv
abs/2003.10350 (2020)

41. Zhang, H., Tian, Y., Zhou, X., Ouyang, W., Liu, Y., Wang, L., Sun, Z.: Pymaf: 3d human
pose and shape regression with pyramidal mesh alignment feedback loop. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV) pp. 11426–11436 (2021)

42. Zhang, J., Liu, X., Ye, X., Zhao, F., Zhang, Y., Wu, M., Zhang, Y., Xu, L., Yu, J.: Editable
free-viewpoint video using a layered neural representation. ACM Transactions on Graphics
40, 1 – 18 (2021)

43. Zhang, Y., Li, Z., An, L., Li, M., Yu, T., Liu, Y.: Lightweight multi-person total motion cap-
ture using sparse multi-view cameras. 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV) pp. 5540–5549 (2021)

44. Zhao, F., Yang, W., Zhang, J., Lin, P.Y., Zhang, Y., Yu, J., Xu, L.: Humannerf: Generalizable
neural human radiance field from sparse inputs. ArXiv abs/2112.02789 (2021)

45. Zheng, Y., Shao, R., Zhang, Y., Yu, T., Zheng, Z., Dai, Q., Liu, Y.: Deepmulticap: Perfor-
mance capture of multiple characters using sparse multiview cameras. International Confer-
ence on Computer Vision (ICCV) pp. 6219–6229 (2021)

https://github.com/zju3dv/EasyMocap

	GenLayNeRF: Generalizable Layered Representations with 3D Model Alignment for Human View Synthesis

