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Abstract. Continual learning allows a model to learn multiple tasks se-
quentially while retaining the old knowledge without the training data
of the preceding tasks. This paper extends the scope of continual learn-
ing research to class-incremental learning for multiple object tracking
(MOT), which is desirable to accommodate the continuously evolving
needs of autonomous systems. Previous solutions for continual learning of
object detectors do not address the data association stage of appearance-
based trackers, leading to catastrophic forgetting of previous classes’
re-identification features. We introduce COOLer, a COntrastive- and
cOntinual-Learning-based tracker, which incrementally learns to track
new categories while preserving past knowledge by training on a com-
bination of currently available ground truth labels and pseudo-labels
generated by the past tracker. To further exacerbate the disentangle-
ment of instance representations, we introduce a novel contrastive class-
incremental instance representation learning technique. Finally, we pro-
pose a practical evaluation protocol for continual learning for MOT and
conduct experiments on the BDD100K and SHIFT datasets. Experimen-
tal results demonstrate that COOLer continually learns while effectively
addressing catastrophic forgetting of both tracking and detection. The
project page is available at https://www.vis.xyz/pub/cooler.

Keywords: Continual learning · Multiple object tracking · Re-Identification.

1 Introduction

Continual learning aims at training a model to gradually extend its knowledge
and learn multiple tasks sequentially without accessing the previous training
data [5]. Since merely finetuning a pre-trained model on the new task would
result in forgetting the knowledge learned from previous tasks - a problem known
in literature as catastrophic forgetting [20]- ad-hoc continual learning solutions
are required. As data distributions and practitioners’ needs change over time,
the practicality of continual learning has made it popular in recent years.
⋆ Equal contribution.
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Fig. 1: Illustration of the class-incremental learning problem for multiple object
tracking. In a first stage, an MOT model can only track cars (red). When given
annotations only for the novel class ‘pedestrian’ (green), the objective is learning
to track the new class without forgetting the previous one.

This paper addresses class-incremental learning for multiple object tracking
(MOT), an important yet novel research problem that, to the best of our knowl-
edge, has not been studied in previous literature. MOT tracks multiple objects
simultaneously from a video sequence and outputs their location and category [2].
While prior work [27] explored domain adaptation of MOT to diverse conditions,
continual learning for MOT would provide a flexible and inexpensive solution to
incrementally expand the MOT model to new classes according to the changing
necessities. For example, as illustrated in Fig. 1, one can train an MOT model
to track cars and then expand its functionality to track pedestrians with new
training data only annotated for pedestrians.

Following the tracking-by-detection paradigm [23], most MOT systems first
detect object locations and classes via an object detector, and then associate
the detected instances across frames via a data association module. State-the-
art trackers often use a combination of motion and appearance cues in their
association module [1,30,35]. While motion cues are straight-forward to use with
simple heuristics, appearance cues are used for object re-identification (Re-ID)
and are more robust to complex object motion and large object displacement
across adjacent frames. Appearance-based association typically requires a Re-ID
module [8,21,31] for learning Re-ID features. However, it is crucial to make such
learned appearance representations flexible to incrementally added categories.
Training the appearance extractors only on the new classes would indeed results
in catastrophic forgetting of Re-ID features for older classes, and degrade the as-
sociation performance (Tab. 2, Fine-tuning). Although previous work [22,28,37]
explores class-incremental learning of object detectors, these approaches are sub-
optimal for MOT by not addressing the data association stage.

To address this problem, we introduce COOLer, a COntrastive- and cOntinual-
Learning-based multiple object tracker. Building on the state-of-the-art appearance-
based tracker QDTrack [21], COOLer represents the first comprehensive ap-
proach for continual learning for appearance-based trackers by addressing class-
incremental learning of both the building blocks of an MOT system, i.e. object
detection and data association. To continually learn to track new categories while
preventing catastrophic forgetting, we propose to combine the available ground
truth labels from the newly added categories with the association pseudo-labels
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and the temporally-refined detection pseudo-labels generated by the previous-
stage tracker on the new training data. Furthermore, adding classes incremen-
tally without imposing any constraint may cause overlapping instance repre-
sentations from different classes, blurring the decision boundaries and leading
to misclassifications. While traditional contrastive learning can disentangle the
representations of different classes, they undermine the intra-class discrimina-
tion properties of the instance embeddings for data association. To this end, we
propose a novel contrastive class-incremental instance representation learning
formulation that pushes the embedding distributions of different classes away
from each other while keeping the embedding distributions of the same class
close to a Gaussian prior. To assess the effectiveness of continual learning strate-
gies for MOT, we propose a practical and comprehensive evaluation protocol and
conduct extensive experiments on the BDD100K [34] and SHIFT [29] datasets.

We demonstrate that COOLer can alleviate forgetting of both tracking and
detection, while effectively acquiring incremental knowledge. Our key contribu-
tions are: (i) we introduce COOLer, the first comprehensive method for class-
incremental learning for multiple object tracking; (ii) we propose to use the
previous-stage tracker to generate data association pseudo-labels to address
catastrophic forgetting of association of previous classes and leverage the tem-
poral information to refine detection pseudo-labels; (iii) we introduce class-
incremental instance representation learning to disentangle class representations
and further improve both detection and association performance.

2 Related Work

Continual learning aims at learning new knowledge continually while alleviat-
ing forgetting. Various continual learning strategies have been proposed, includ-
ing model growing [26], regularization [14,16], parameter isolation [19], and re-
play [24]. We here discuss related literature in continual learning for object de-
tection, unsupervised Re-ID learning, and contrastive representation learning.
Continual Learning for Object Detection. Shmelkov et al. [28] propose the
first method for continual learning for object detection. It uses the old model
as the teacher model which generates pseudo labels for the classification and
bounding box regression outputs to prevent forgetting. Later works [17,22] fol-
low this diagram by incorporating the state-of-the-art detectors such as Faster
R-CNN [25] and Deformable DETR [38]. While our work also uses detection
pseudo-labels, we refine them temporally by leveraging a multiple-object tracker.
Unsupervised Re-ID Learning. As annotating instance IDs is laborious and
time-consuming, unsupervised Re-ID learning proposes to learn data association
from video sequences without annotations given only a pre-trained detector [13].
Most unsupervised Re-ID learning approaches generate pseudo-identities to train
the association module from a simple motion-based tracker [13], image clustering
[9,15,32] or contrastive learning of instance representation under data augmen-
tation [27]. In contrast, our class-incremental instance representation learning
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Fig. 2: Pipeline of COOLer for class-incremental learning. 1). Initialize the new
model with weights from the old model. 2). Use the previous tracker to refine
the initial detections and generate detection and association pseudo-labels. 3).
Append them to the ground truth labels to train the new model jointly. 4).
During training, apply class-incremental instance representation learning.

approach handles a combination of labeled and unlabeled Re-ID data to contin-
ually learn Re-ID of new categories’ instances without forgetting the old ones.
Contrastive Representation Learning. Contrastive learning [4,10] aims to
attract representations of similar samples and push away representations of dis-
similar ones. Previous continual learning methods leverage contrastive learning
at a category level. Mai et al. [18] propose supervised contrastive replay and use
a nearest-class-mean classifier instead of the softmax classifier. Co2L [3] shows
that contrastively-learned representations are more robust to catastrophic for-
getting than ones trained with cross-entropy. OWOD [12] introduces a memory
queue for updating the class mean prototype vector during training to help
contrastive learning. However, such class-contrastive formulations often collapse
intra-class representations, hindering Re-ID-based data association in MOT. Our
class-incremental instance representation learning approach maintains intra-class
variability with a contrastive loss that estimates standard deviation prototype
vectors for each class and keeps the class distribution close to a prior.

3 Method

We define the continual learning problem for MOT (Sec. 3.2). We then provide
an overview of COOLer (Sec. 3.2) and introduce its two key components, namely
continual pseudo-label generation for detection and data association (Sec. 3.3),
and class-incremental instance representation learning (Sec. 3.4).

3.1 Problem Definition

We define continual learning for MOT as a class-incremental learning (CIL)
problem over a sequence of B training stages {S0,S1, ...,SB−1}, where at each
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stage b a set of categories Yb is introduced. Sb = {X b,Db, T b} is the set of training
videos X b, detection labels Db, and tracking labels T b for a set of categories Yb

at stage b. Although typical CIL assumes no overlapping classes in different tasks
b and b′, it is common in real-world applications to observe old classes in new
stages [33]. Thus, we assume that categories from another stage b′ may occur
again at b despite not being in the annotation set, i.e. Yb ∩ Yb′ = ∅. The goal is
continually learning an MOT model that can track Yb without forgetting to track
Ȳb−1 = Y0 ∪ ... ∪ Yb−1. During each stage b, only data Sb can be accessed. After
each training stage b, the model is evaluated over all seen classes Yb = Y0∪...∪Yb.

3.2 COOLer

Architecture. COOLer’s architecture is based on the representative appearance-
based tracker QDTrack [21], which consists of a Faster R-CNN [25] object de-
tector and a similarity head to learn Re-ID embeddings for data association.
Base Training. Given the data S0 = {X 0,D0, T 0} from the first stage b = 0, we
train the base model ϕ0 following QDTrack. Let D̂0 be the detector predictions
and V̂0 their corresponding Re-ID embeddings. QDTrack is optimized end-to-end
with a detection loss Ldet to train the object detector, and a tracking loss Ltrack

to learn the Re-ID embeddings for data association. Ldet is computed from D0

and D̂0 as in Faster R-CNN [25]. As for the tracking loss Ltrack, QDTrack first
samples positive and negative pairs of object proposals in adjacent frames using
D0, T 0, and D̂0. Then, Ltrack is computed from a contrastive loss using the Re-
ID embeddings V̂0 of the sampled proposals to cluster object embeddings of the
same IDs and separate embeddings of different instances. Refer to the original
QDTrack paper [21] for more details. The final loss is:

L0 = Ldet(D̂0,D0) + Ltrack(D̂0, V̂0,D0, T 0). (1)

Continual Training. Given the old model ϕb−1 trained up to the stage b− 1,
and the new data Sb for the stage b, COOLer is the first tracker to incrementally
learn to track the new classes Yb without forgetting the old ones Ȳb−1. We propose
a continual pseudo-label generation strategy for MOT (Sec. 3.3) that uses the
previous tracker ϕb−1 to generate pseudo-labels {D̄b

old, T̄ b
old} for the old classes

Ȳb−1, and combine them with the ground-truth labels {Db
new, T b

new} for the new
ones Yb to train the new model ϕb. To further disentangle the Re-ID embedding
space for different classes and instances, we propose a novel class-incremental
instance representation learning approach (Sec. 3.4). See Fig. 2 for an overview.

3.3 Continual Pseudo-label Generation for Tracking

While training with detection pseudo-labels generated by the previous object
detector has proven effective against catastrophic forgetting in CIL of object
detection [22,36], detection pseudo-labels lack the instance association informa-
tion, which is crucial to learn the Re-ID module in appearance-based MOT. We
instead propose to use the MOT model ϕb−1 from the previous stage b− 1 to
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Fig. 3: Illustration of our class-incremental instance representation learning. We
keep a memory queue to update the class embedding distributions. The con-
trastive loss includes an inter-class pushing loss and an intra-class pulling loss.

simultaneously generate temporally-refined detection pseudo-labels D̄b
old and in-

stance association pseudo-labels T̄ b
old for the old classes Ȳb−1 in the new stage b.

We then train the new tracker ϕb on the union of the pseudo-labels {D̄b
old, T̄ b

old}
for old classes Ȳb−1 and ground-truth labels {Db

new, T b
new} for new classes Yb:

Lb
pseudo = Ldet(D̂b, D̄b

old ∪ Db
new) + Ltrack(D̂b, V̂b, D̄b

old ∪ Db
new, T̄ b

old ∪ T b
new). (2)

It is worth noticing that, unlike detection pseudo-labels in [22,36], our detection
pseudo-labels are temporally refined by the tracking algorithm, resulting in a
reduced number of false positives and in recovery of initially missed detections.
Moreover, the pseudo-identities T̄ b

old alleviate catastrophic forgetting in data
association by training the similarity head on old classes Ȳb−1.

3.4 Class-Incremental Instance Representation Learning

Our class-incremental learning strategy based on tracking pseudo-labels (Sec.
3.3) enforces that each instance must be well-separated from others in the em-
beddings space, but does not constrain where Re-ID features for each class are
projected, potentially leading to entangled class distributions that hurt both
detection and tracking performance. Previous CIL approaches [3,12,18] ensure
separation of class distributions by applying class-contrastive losses during incre-
mental learning. However, naively applying contrastive learning on the instance
embedding space would cause the distribution of a class’ embeddings to collapse
to a single point, undermining the intra-class discrimination properties of the
learned Re-ID embeddings necessary for effective data association.

To this end, we introduce a novel contrastive loss for class-incremental in-
stance representation learning that disentangles embeddings of different classes
while maintaining the intra-class variability of the embeddings (Fig. 3).
Class Prototype Vectors. First, we model variability of instance embeddings
within each class c by approximating each class’ embedding distribution as a
Gaussian N (µc,diag(σ

2
c)), whose class mean prototype vector µc and class stan-

dard deviation prototype vector σc are approximated online as the exponential
moving average of a memory queue with limited size Nqueue that stores exem-
plary class embeddings. See Supplement Sec. A for details on the memory queue.
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Contrastive Loss. Our contrastive loss consists of a pushing term Lpush that
pushes distributions of different classes away from each other, and a pulling term
Lpull that keeps the class distribution close to a prior, ensuring intra-class vari-
ability. We derive such losses from the Bhattacharyya distance DB , which mea-
sures the similarity between distributions N (µc1 ,diag(σ

2
c1)) and N (µc2 ,diag(σ

2
c2))

of two classes c1 and c2. Their Bhattacharyya distance is:

DB(c1, c2) =
1

8
(µc1

− µc2
)TΣ−1

c1,c2(µc1
− µc2

) +
1

2
ln

detΣc1,c2√
detΣc1 detΣc2

, (3)

where Σc1,c2 =
Σc1

+Σc2

2 . As it is hard to back-propagate gradients for the
prototype mean and standard deviation µc,Σc, we additionally introduce the
per-batch embedding mean µ̄c and standard deviation σ̄c for class c:

µ̄c =
1

Nc

Nc∑
i=1

vc,i, σ̄c =

√√√√ 1

Nc

Nc∑
i=1

(vc,i − µc)
2, (4)

where Nc denotes the number of embedding vectors for class c in the current
batch and vc,i is the ith embedding vector for class c.
Pushing Loss. For the pushing loss, the distance between the two class distri-
butions is derived from the first term of Eqn. 3 as:

Dpush(c1, c2) =
√

(µ̄c1
− µc2

)TΣ−1
c1,c2(µ̄c1

− µc2
). (5)

We use the following hinge-based pushing loss to separate the two distributions:

Lpush =
1

C(C − 1)

C∑
c1=1

C∑
c2=1
c2 ̸=c1

[∆push −Dpush(c1, c2)]
2
+, (6)

where C is the number of classes, ∆push is the hinge factor, and [x]+ = max(0, x).
Pulling Loss. For the pulling loss, we introduce a prior Gaussian distribution
N (µc,diag(σ

2
p)) for each class, which has the same class mean prototype vector

µc while the standard deviation σp is fixed. We derive the distance between the
class distribution and the prior distribution from the second term of Eqn. 3 as:

Dpull(c, p) =
1

2
(

Nd∑
j=1

ln(
σ̄2
c,j + σ2

p,j

2
)−

Nd∑
j=1

ln(σ̄c,jσp,j)), (7)

where Nd is the dimension of the embedding. We find that directly applying
Eqn. 7 as the pulling loss will lead to numerical instability during optimization,
as the logarithm operator is non-convex. We propose the following surrogate
based on the L2 distance for a smoother optimization landscape as follows:

Lpull =
1

C

C∑
c=1

Nd∑
j=1

(σ̄c,j − σp,j)
2. (8)

Total Loss. Finally, we extend Eqn. 2 with our pulling and pushing contrastive
losses to learn the tracking model ϕb at stage b:

Lb = Ldet + Ltrack + β1Lpull + β2Lpush, (9)

where β1 and β2 are weights for the pushing and the pulling loss respectively.
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4 Evaluation Protocol

We introduce a protocol for evaluating algorithms for class-incremental MOT.

Datasets. We use the BDD100K [34] and SHIFT [29] tracking datasets for
evaluation. BDD100K is a large-scale real-world driving dataset for MOT with 8
classes. SHIFT is a large-scale synthetic driving dataset for MOT with 6 classes.
Because of the size of the SHIFT dataset, training multiple stages on it is not
feasible with modest computational resources. To ensure practicality for all re-
searchers’, we propose to only use its clear-daytime subset. The detailed class
statistics for each dataset are reported in Tab. 1. Note that other popular MOT
datasets are unsuitable for our setting. The MOT20 dataset [7] has very few cat-
egories. While TAO [6] has hundreds of classes, due to the scarcity of annotations
it is intended as an evaluation benchmark and is not suitable for CIL.

Table 1: Class frequencies for the training splits of BDD100K [34] and
SHIFT’s [29] clear-daytime subset.

Dataset Car Ped Truck Bus Bike Rider Motor Train

BDD100K [34] 2098517 369798 149411 57860 25565 20107 12176 1620
SHIFT [29] 677580 749640 145940 65367 52267 - 74469 -

Protocol. The choice of the class ordering during incremental stages may largely
impact results and observations. Object detection benchmarks typically add
classes by their alphabetical order. However, in real-world MOT applications
the annotation order often depends by (i) class frequency or (ii) semantic group-
ing. We hence propose the practical class splits to mirror the practitioners’ needs.
First, we propose two frequency-based splits. The Most→Least (M→L) split in-
crementally adds classes one-by-one from the most to the least frequent class
according to Tab. 1. General→Specific (G→S) only evaluates one incremental
step by dividing the classes into two groups: the first half of the most populated
classes (General) and the remainder (Specific). Then, we propose a semantic
split. We group classes into three super-categories according to their seman-
tic similarity: vehicles, bikes, and humans. Therefore, we experiment on the
Vehicle→Bike→Human (V→B→H) setting with two incremental steps.

Taking BDD100K as example, in the M→L setting the classes are added
as follows: car�pedestrian�truck�bus�bike�rider�motor�train. In the G→S
setting, the model is first trained on {car, pedestrian, truck, bus}, and then {bike,
rider, motor, train} are added at once. In the V→B→H setting, the classes are
added as follows: {car, truck, bus, train}�{bike, motor}�{pedestrian, rider}.
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5 Experiments

5.1 Baselines

Since no prior work studied class-incremental learning for multiple objcet track-
ing, we compare COOLer with the following baseline methods:
Fine-tuning. In each incremental step, the model is trained only on the training
data of the new classes, without addressing catastrophic forgetting.

Table 2: Class-incremental Learning on BDD100K. We conduct experi-
ments on M→L, G→S and V→B→H settings. We compare COOLer with the
Fine-tuning, Distillation, Det PL baselines and the oracle tracker.

Setting
Stage (+New Classes)

All Classes

Method mMOTA mHOTA mIDF1 MOTA HOTA IDF1 mAP

M→L Stage 0 (Car) 67.6 62.1 73.3 67.6 62.1 73.3 58.7

M→L
Stage 1 (+Pedestrian)

Fine-tuning 15.6 21.8 27.7 4.5 19.1 14.1 19.9
Distillation 46.4 51.7 63.0 61.8 59.0 70.1 47.1
Det PL 46.7 49.5 59.2 56.3 53.9 61.8 46.8
COOLer 54.2 52.6 64.3 62.7 59.5 70.5 47.4
Oracle 57.4 53.6 65.9 65.1 59.9 71.5 48.3

M→L
Stage 2 (+Truck)

Fine-tuning -11.5 12.8 14.0 -2.2 13.3 6.2 11.7
Distillation 27.3 47.8 57.3 56.9 56.6 67.4 42.8
Det PL 34.9 47.1 55.6 57.3 55.5 65.1 42.5
COOLer 42.8 49.2 59.6 58.6 57.9 68.7 42.6
Oracle 49.8 50.8 62.1 63.2 58.9 70.4 45.0

M→L
Stage 3 (+Bus)

Fine-tuning -24.0 9.2 9.3 -2.0 8.6 2.5 9.9
Distillation -11.2 43.4 50.8 54.0 55.1 65.6 40.8
Det PL 14.1 43.1 49.1 53.6 53.4 61.5 40.9
COOLer 34.0 47.9 57.3 55.8 56.8 67.4 41.9
Oracle 45.4 50.1 60.9 62.5 58.7 70.2 44.5

M→L
Stage 4 (+Bicycle)

Fine-tuning -16.0 5.6 6.5 -0.8 4.2 0.8 4.6
Distillation -19.4 40.1 47.1 51.9 53.2 63.6 35.1
Det PL 3.6 37.6 42.4 41.2 43.0 46.2 34.3
COOLer 28.6 44.4 53.9 53.2 55.7 66.1 36.5
Oracle 41.3 47.1 58.0 62.2 58.5 69.9 39.9

G→S Stage 0 (General) 45.6 50.3 61.1 62.4 59.0 70.2 44.6

G→S
Stage 1 (+Specific)

Fine-tuning -24.7 11.7 14.1 -0.5 5.7 1.5 8.4
Distillation -32.9 35.4 42.4 59.6 57.3 68.3 29.5
Det PL 6.0 34.9 41.5 54.1 52.0 59.6 27.9
COOLer 28.6 38.5 48.2 60.5 58.2 69.3 29.9
Oracle 30.4 38.9 49.0 61.8 58.7 70.0 30.9

V→B→H Stage 0 (Vehicle) 33.1 39.2 46.8 65.1 61.0 72.3 35.0

V→B→H
Stage 1 (+Bike)

Fine-tuning -27.5 9.7 11.2 -0.6 4.9 1.2 7.3
Distillation -30.5 34.1 39.6 62.9 59.7 70.6 29.1
Det PL -3.3 31.3 37.0 53.7 51.4 57.9 26.7
COOLer 24.4 36.8 44.8 63.1 60.2 70.9 29.1
Oracle 27.6 38.5 47.8 64.3 60.4 71.6 30.8

V→B→H
Stage 2 (+Human)

Fine-tuning 7.4 10.0 13.1 4.4 18.2 13.4 8.2
Distillation 14.8 35.8 43.9 55.9 55.9 66.4 27.9
Det PL 15.5 34.6 41.5 52.1 51.4 58.7 27.4
COOLer 27.1 37.5 46.8 59.2 57.8 68.8 28.8
Oracle 30.4 38.9 49.0 61.8 58.7 70.0 30.9

Distillation. We design a distillation baseline based on Faster-ILOD [22], a
state-of-the-art class-incremental object detection method that uses distillation
losses from a teacher model of the previous stage to alleviate forgetting. To
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further address forgetting in data association, we add the following distillation
loss on the similarity head of QDTrack to enforce the cosine similarity between
teacher and student embeddings for the old classes:

Ldist
track = (

vteacher · vstudent
∥vteacher∥2 · ∥vstudent∥2

− 1)2, (10)

where vteacher and vstudent are the Re-ID embeddings of the teacher and the stu-
dent model, computed from the same proposals sampled for Faster-ILOD’s ROI
head distillation. The final loss is then L = Ldet + Ltrack + µ1Ldist

det + µ2Ldist
track,

where Ldist
det is the detection distillation loss in [22], and µ1, µ2 are set to 1.

Detection Pseudo-Labels (Det PL). We compare against a baseline that
only trains on the joint set of ground-truth labels for the new classes and high-
confident (> 0.7) detection pseudo-labels from the old detector for the old classes.
Unlike our method, this baseline does not temporally refine the detection pseudo-
labels with the tracker, and does not provide association pseudo-labels.
Oracle. We compare the result with an oracle tracker trained in a single stage
on the ground truth annotations of all classes.

Table 3: Class-incremental Learning on SHIFT. We conduct experiments
on M→L, G→S and V→B→H settings. We compare COOLer with the Fine-
tuning and Det PL baselines and the oracle tracker.

Setting
Stage (+New Classes)

All Classes

Method mMOTA mHOTA mIDF1 MOTA HOTA IDF1 mAP

M→L Stage 0 (Pedestrian) 53.7 46.1 54.4 53.7 46.1 54.4 43.0

M→L
Stage 1 (+Car)

Fine-tuning 25.8 28.5 30.9 24.2 40.5 37.7 25.3
Det PL 44.6 46.8 49.7 44.2 47.2 49.1 45.6
COOLer 50.9 50.9 57.0 50.9 51.0 56.8 45.7
Oracle 53.7 51.8 58.7 53.7 51.4 58.4 46.2

M→L
Stage 2 (+Truck)

Fine-tuning 11.7 18.0 19.6 2.7 16.9 8.1 15.5
Det PL 34.6 44.7 45.9 33.5 43.0 40.4 44.8
COOLer 45.2 51.5 57.3 48.2 50.6 56.3 44.8
Oracle 52.6 53.5 60.7 53.5 51.8 58.9 46.0

G→S Stage 0 (General) 50.8 53.1 60.0 52.4 51.9 58.2 46.0

G→S
Stage 1 (+Specific)

Fine-tuning 19.4 24.1 26.9 4.8 18.1 10.1 20.0
Det PL 45.8 49.8 55.4 48.7 48.9 52.7 43.2
COOLer 46.0 50.8 57.0 50.8 51.4 57.5 42.7
Oracle 48.8 51.1 57.5 52.5 51.9 58.5 43.8

V→B→H Stage 0 (Vehicle) 47.2 52.1 57.4 51.9 56.4 61.4 45.2

V→B→H
Stage 1 (+Bike)

Fine-tuning 16.1 20.4 22.4 5.9 20.5 12.2 16.6
Det PL 39.4 47.1 51.0 41.4 47.4 48.6 42.0
COOLer 44.5 51.3 57.5 49.5 55.5 60.9 42.3
Oracle 47.8 52.1 58.0 51.5 55.5 60.8 44.2

V→B→H
Stage 2 (+Human)

Fine-tuning 8.9 7.7 9.1 23.0 31.2 30.9 7.1
Det PL 37.3 41.4 43.7 39.8 40.9 42.6 41.7
COOLer 47.0 50.6 57.5 50.7 51.3 57.7 42.2
Oracle 48.8 51.1 57.5 52.5 51.9 58.5 43.8
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5.2 Implementation Details

COOLer’s architecture is based on QDTrack with a ResNet-50 [11] backbone.
The model is optimized with SGD with momentum of 0.9 and weight decay of
1e-4. We train the network with 8 NVIDIA 2080Ti GPUs with a total batch
size of 16. For all experiments, we train for 6 epochs in each incremental stage.
The initial learning rate is 0.02 and decayed to 0.002 after 4 epochs, and to
0.0002 after 5. For BDD100K experiments, the weight for the contrastive losses
β1, β2 are 0.01; for SHIFT experiments, β1, β2 are 0.001. The hinge factor for the
pushing loss ∆push is set to 15.0. For the prior distribution N (µc,diag(σ

2
p)) of

the pulling loss, we use σp = 0.05 · 1⃗, where 1⃗ is the unit vector. We select hyper-
parameters from a grid search, and report sensitivity analysis in the supplement.

Table 4: Ablation Study on Method Components. We ablate on the choice
of pseudo-labels (PL) and contrastive (CT) loss for COOLer on M→L setting on
BDD100K. We compare training with our pseudo-labels generated by the tracker
(Track) and the pseudo-labels generated by the detector (Det). We also compare
our contrastive loss (Ours) with the contrastive loss proposed in OWOD [12].
Setting
Stage (+New Classes)

Components All Classes

PL CT Loss mMOTA mHOTA mIDF1 MOTA HOTA IDF1 mAP

M→L
Stage 1
(+Pedestrian)

Det ✗ 46.7 49.5 59.2 56.3 53.9 61.8 46.8
Track ✗ 54.1 52.6 64.5 62.5 59.3 70.3 47.2
Track OWOD [12] 53.7 52.2 63.9 62.1 58.9 69.8 47.2
Track Ours 54.2 52.6 64.3 62.7 59.5 70.5 47.4

M→L
Stage 2
(+Truck)

Det ✗ 34.9 47.1 55.6 57.3 55.5 65.1 42.5
Track ✗ 43.4 49.1 59.5 58.2 57.5 68.3 42.8
Track OWOD [12] 41.9 48.7 58.9 57.6 57.3 68.0 42.8
Track Ours 42.8 49.2 59.6 58.6 57.9 68.7 42.6

M→L
Stage 3
(+Bus)

Det ✗ 14.1 43.1 49.1 53.6 53.4 61.5 40.9
Track ✗ 32.8 47.6 56.9 54.5 56.3 66.8 41.9
Track OWOD [12] 33.1 47.5 56.9 53.9 56.1 66.6 41.9
Track Ours 34.0 47.9 57.3 55.8 56.8 67.4 41.9

M→L
Stage 4
(+Bicycle)

Det ✗ 3.6 37.6 42.4 41.2 43.0 46.2 34.3
Track ✗ 25.7 43.9 52.9 50.8 55.1 65.4 36.1
Track OWOD [12] 24.7 43.7 52.7 49.8 54.8 65.0 36.1
Track Ours 28.6 44.4 53.9 53.2 55.7 66.1 36.5

5.3 Experimental Results

We compare our method to the above-mentioned baselines on the BDD100K
and SHIFT datasets. We evaluate the mAP for object detection, and represen-
tative tracking metrics for MOT. mMOTA, mHOTA, mIDF1 are averaged across
category-specific metrics, while MOTA, HOTA, IDF1 are the overall metrics.
BDD100K. Table 2 shows the results on the BDD100K dataset. In the M→L
setting, we show results up to stage 4 (+Bicycle) due to space constraints, and
report full results in the supplement. COOLer achieves the best tracking per-
formance among all methods and in all settings. In (M→L, Stage 4) COOLer
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Fig. 4: Qualitative Results of the Det PL baseline and COOLer on a validation
video sequence of BDD100K in the fourth step of the M→L setting (+Bicycle).
Different bounding box colors represent different classes, and the number above
the bound box denotes the instance ID. Best viewed in color with zoom.

has a noteworthy 48.0%, and 25.0% mMOTA improvement compared to the
Distillation and Det PL baselines, showing its effectiveness in class-incremental
tracking. Besides boosting the tracking performance, COOLer also improves con-
tinual object detection. Compared to the Distillation baseline based on the
class-incremental object detector Faster-ILOD [22], COOLer achieves higher
mAP thanks to our temporally-refined detection pseudo-labels. COOLer obtains
+1.4% and +2.2% mAP wrt. Distillation and Det PL in (M→L, Stage 4), and
+0.9% and +1.4% mAP wrt. Distillation and Det PL in (V→B→H, Stage 2).
SHIFT. We conduct experiments on the SHIFT dataset, and report the results
in Tab. 3. The results confirm the findings and trends observed ob BDD100K.
COOLer consistently outperforms all other baselines across all tracking metrics
on all classes, further showing the superiority and generality of our approach.

5.4 Ablation Study

We here ablate on method components and analyze qualitative results. In the
supplement, we provide an additional analysis of the performance on old classes
(model’s rigidity) and new classes (model’s plasticity) under incremental stages.
Ablation on Method Components. We show the effectiveness of each pro-
posed component of COOLer in Tab. 4. We compare our detection pseudo-
labels refined by the tracker (Track) vs. unrefined detection pseudo-labels from
the object detector only (Det). Moreover, we analyze the effect of additional
class-incremental contrastive losses, comparing ours (Ours) vs. OWOD’s [12]
(OWOD). Our components consistently improve over the baselines, and the im-
provement is more significant as more incremental stages are performed, sug-
gesting that more stages pose a greater challenge in CIL for MOT. Notably, us-
ing the tracking pseudo-labels improves over all metrics, with 22.2% mMOTA,
6.9% mHOTA, 10.5% mIDF1, and 1.8% mAP at stage 4. Enabling the class-
incremental contrastive loss further boosts 2.9% mMOTA, 0.5% mHOTA, and
1.0% mIDF1, and 0.4% mAP, highlighting the superiority of our contrastive
loss. The results confirm that COOLer can (i) utilize the tracker’s temporal re-
finement to produce higher-quality labels for detection, (ii) better preserve the
association performance thanks to the association pseudo-labels, and (iii) that
our contrastive loss design outperforms OWOD’s.
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Qualitative Comparison. Fig. 4 shows that the Det PL baseline would suffer
from ID switches of the car (red) in the middle, due to the misclassification of it
as a bus (purple) in the second frame. It can also not associate the pedestrians
beside the pole across two frames (ID 322 switches to ID 325). Nevertheless,
COOLer can both correctly classify the car and associate the pedestrians. This
demonstrates that COOLer can better retain the knowledge of associating ob-
jects of the old classes while reducing misclassifications.

6 Conclusion

Our work is the first to address continual learning for MOT, a practical prob-
lem as MOT datasets are expensive to collect. We introduce COOLer, the first
comprehensive approach to class-incremental learning for multiple object track-
ing. COOLer adopts a continual pseudo-label generation strategy for tracking
that leverages the previous tracker to generate association pseudo-labels and
temporally-refine detection pseudo-labels, while introducing class-incremental
instance representation learning to further improve the tracking performance.
Experimental results demonstrate that COOLer overcomes the drawbacks of
detection-oriented methods, improving both detection and association perfor-
mance. Although highly effective in the proposed setting, COOLer assumes that
instances from the previous classes are present in the new training data. We be-
lieve experience replay to be a possible solution to this limitation, and we leave
its exploration to future work. We hope our work can stimulate future research
in this challenging yet practical direction.
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